IS09001: 2015 质量管理体系受控文件

TX8C126x 用户手册

珠海泰芯半导体有限公司 Zhuhai Taixin Semiconductor Co., Limited

珠海市高新区港湾一号科创园港 11 栋 3 楼

保密等级	A	TX8C126x 用户手册	文件编号	TX-TX8C126x-RD
发行日期	2024-09-04	TAOCIZOX /II/ T/M	文件版本	V2.0

修订记录

日期	版本	描述	修订人
2024-09-04	V2. 0	1、修改 CLK_CON5[5:4]描述;	TX
2023-10-16	V1. 17	1、修改比较器部分的功能框图;	TX
2023-08-21	V1.16	1、修改 ADC 参考电压的描述;	TX
2023-05-30	V1.15	1、修改 ADC 参考电压的描述;	TX
2023-05-17	V1. 14	1、修改 ADC_ACONO 的 bit2, bit3 的默认值描述错误; 2、修改 SPI 模块的使用流程说明; 3、修改 ADC 内部参考电压的描述;	TX
2023-04-27	V1.13	1、修改 ADC 内部参考描述;	TX
2023-02-03	V1. 12	1、解决部分设备打开阅读时,出现乱码问题;	TX
2022-08-10	V1. 11	1、修改 ADC_CFG1, IO 端口和运放模块的部分内容描述;	TX
2022-07-06	V1. 10	1、修改 CMP0_CON5[3:2]和 SPI_CON[2]的寄存器错误描述; 2、第三章节存储器描述中增加 XSFR 实际地址的说明;	TX
2022-06-15	V1.9	1、增加 FLASH 控制模块的 NVR 系统信息区域说明;	TX
2022-06-13	V1.8	2、修改工作温度范围为-40° ~ 105°; 并增加了 IO_MAP[2:0]写保护说明;	TX

M
泰芯半导体
TaiXin Semiconductor

珠海泰芯半导体有限公司 Zhuhai Taixin Semiconductor Co., Limited

珠海市高新区港湾一号科创园港 11 栋 3 楼

版权所有侵权必究

保密等级	A	TX8C126x 用户手册	文件编号	TX-TX8C126x-RD
发行日期	2023-02-03	TAGCIZOX /ft/ 1 /ll	文件版本	2022-06-07

2022-06-07	V1.7	1、增加 LED 硬件模块的内容;	TX
2022 06 01	V1.6	1、修改 LP_CON【3】寄存器的描述默认值写错了的问	TV
2022-06-01		题,并增加了详细说明;	TX
		1、修改 STMR_LOADEN 寄存器的描述;	
2022-05-24	V1.5	2、修改系统控制模块的	TX
2022-05-24		ADC_ACONO, ADC_ACON1, ADC_ACON2 的内容描述,使客	1 A
		户更容易理解和注意事项。	

注意:

- 1、本公司保留对以下所有产品在功能、性能、方案、设计及改进方面的最终解释权。
- 2、本公司保留对文档复制及更改的权利。

TX8	8C126x 用户手册	1
1.	产品概述	. 14
	1.1. 说明	14
	1.2. 特性	15
2.	中央处理器	
	2.1. 累加器(ACC)	
	2.2. 寄存器(B)	
	2.3. 堆栈指针寄存器(SP)	
	2.4. 堆栈指针寄存器(SPH)	
	2.5. 数据指针寄存器(DPTRO/DPTR1)	
	2.6. 数据指针控制寄存器(DPCFG)	
	2.7. 程序状态寄存器(PSW)	. 20
	2.8. PCON1	
	2.9. 程序计数器(PC)	
3	存储器	
٥.	3.1. 程序存储器	
	3.2. XDATA 数据存储器	
	3.3. IDATA	
	3.4. SFR 空间	
4	时钟系统	
٦.	4.1. 时钟系统概述	
	4.2. 时钟系统主要功能	
	4.3. 时钟系统框图	
	4.4. 系统振荡器	ە ە
	4.4.1. 内部低速 RC 振荡器	9 0
	4.4.2. 内部高速 RC 振荡器	
	4.4.3. 外部晶体振荡器	
_	复位系统	. 10
Э.	5.1. 上电复位	10
	5.2. 掉电复位	
	5.3. 看门狗复位	
	5.3.1. WDT CON	
	5.3.2. WDT_CON	
	5.4. 低电检测复位	
	5.4.1. LVD CON0	
	5.4.2. LVD CON1	
	5.4.3. LVD_CON2	
	5.4.4. LVD_CON3	. 15
6.	低功耗管理	
	6.1. Idle Mode 及唤醒	. 17
	6.2. Stop Mode 及唤醒	. 17
	6.3. Sleep Mode 及唤醒	. 17
	6.4. 低功耗唤醒单元结构图	. 18
	6.5. 寄存器详细说明	. 18
	6.5.1. WKUP_CON0	
	6.5.2. WKUP_PND	
	6.5.3. LP_CON	
7.	系统控制模块	
	7.1. 功能概述	
	7.2. 寄存器列表	. 22

7.3.	寄存器详细说明	23
	7.3.1. SYS CON0	23
	7.3.2. SYS CON1	24
	7.3.3. SYS_CON2	25
	7.3.4. SYS_CON3	26
	7.3.5. SYS_CON4	27
	7.3.6. SYS_CON5	28
	7.3.7. SYS_CON6	29
	7.3.8. SYS_CON7	
	7.3.9. SYS_CON8	
	7.3.10. SYS_PND	
	7.3.11. IO_MAP	
	7.3.12. CLK_XOSC	
	7.3.13. CLK_ACON0	
	7.3.14. CLK_ACON1	
	7.3.15. ADC_ACON0	
	7.3.16. ADC_ACON1	36
	7.3.17. ADC_ACON2	
	7.3.18. CLK_CON0	
	7.3.19. CLK_CON1	
	7.3.20. CLK_CON2	40
	7.3.21. CLK_CON3	
	7.3.22. CLK_CON4	41
	7.3.23. CLK_CON5	42
	7.3.24. CLK_CON6	
	7.3.25. CLK_CON7	44
1 . Nor =	7.3.26. CLK_CON8	44
8. 甲断剂	系统	45
	中断概述	
8.2.	中断向量表	45
	寄存器列表	
8.4.	寄存器详细说明	47
	8.4.1. IE0	47
	8.4.2. IE1	48
	8.4.3. IE2	
	8.4.4. IE3	50
	8.4.5. IP0	51
	8.4.6. IP1	51
	8.4.7. IP2	52
	8.4.8. IP3	52
	8.4.9. IP4	
	8.4.10. IP5	
	8.4.11. IP6	
	8.4.12. IP7	
8.5.	中断优先级及中断嵌套	55
9. I/O 端		55
9.1.	功能描述	55
	结构框图	
	引脚功能复用	
7.5.	9.3.1. IO 引脚定义说明	
	9.3.2. 模拟功能引脚复用表	
	9.3.3. 外设数字输出功能复用图	
	9.3.4. 外设数字输入功能复用表	59
	9.3.5. 引脚功能复用具体配置示例	60
0.4	寄存器列表	
9.4.	可	oī

9.5.	寄存器详细说明	. 67
	9.5.1. P0	. 67
	9.5.2. P0 PU	
	9.5.3. PO PD.	
	9.5.4. P0 MD0	
	9.5.5. P0 MD1	
	9.5.6. PO AFO	
	9.5.7. P0 TRG0	
	9.5.8. P0 TRG1	
	9.5.9. PO PND	
	9.5.10. PO IMK	
	9.5.11. PO AIOEN	
	9.5.12. PO AIOEN1	
	9.5.13. PO AIOEN2	
	9.5.14. P0 DRV0	
	9.5.15. P0 DRV1	
	9.5.16. P0 DRV2	
	9.5.17. P0 DRV3	
	9.5.18. P0 DRV4	
	9.5.19. P0 DRV5	
	9.5.20. P0 DRV6	
	9.5.21. P0 DRV7	
	9.5.22. PO ODN	
	9.5.23. PO ODP	
	9.5.24. P1	
	9.5.25. P1 PU	
	9.5.26. P1 PD	86
	9.5.27. P1 MD0	
	9.5.28. P1 MD1	
	9.5.29. P1 AF0	88
	9.5.30. P1_TRG0	
	9.5.31. P1_TRG1	90
	9.5.32. P1_PND	
	9.5.33. P1_IMK	
	9.5.34. P1_AIOEN	
	9.5.35. P1_AIOEN1	
	9.5.36. P1_AIOEN2	
	9.5.37. P1_DRV0	
	9.5.38. P1_DRV1	
	9.5.39. P1_DRV2	
	9.5.40. P1_DRV3	
	9.5.41. P1_DRV4	
	9.5.42. P1_DRV5	
	9.5.43. P1_DRV6	
	9.5.44. P1_DRV7	
V	9.5.45. P1_ODN	
	9.5.46. P1_ODP	
A,	9.5.47. P2	
	9.5.48. P2_PU	
	9.5.49. P2_PD	
	9.5.50. P2_MD0	
	9.5.51. P2_MD1	
	9.5.52. P2_AF0	
	9.5.53. P2_TRG0	
	9.5.54. P2_TRG1	
	9.5.55. P2_PND	
	7.J.JU. 1 4 IIVIN	. i i U

9.5.57. P2_AIOEN	
9.5.58. P2_AIOEN1	
9.5.59. P2_AIOEN2	
9.5.60. P2 DRV0	113
9.5.61. P2 DRV1	114
9.5.62. P2 DRV2	114
9.5.63. P2 DRV3	115
9.5.64. P2 DRV4	116
9.5.65. P2 DRV5	116
9.5.66. P2 DRV6	117
9.5.67. P2 DRV7	
9.5.68. P2 ODN	118
9.5.69. P2_ODP	119
9.5.70. P3	120
9.5.71. P3 PU	
9.5.72. P3 PD	121
9.5.73. P3 MD0	
9.5.74. P3 MD1	122
9.5.75. P3 AF0	122
9.5.76. P3 TRG0	
9.5.77. P3 TRG1	
9.5.78. P3 PND	123
9.5.79. P3 IMK	
9.5.80. P3 AIOEN	
9.5.81. P3 AIOEN1	
9.5.82. P3 AIOEN2 1	125
9.5.83. P3 DRV0	125
9.5.84. P3 DRV1	
9.5.85. P3 ODN	
9.5.86. P3 ODP	120
9.5.87. FOUT S00	
9.5.88. FOUT S01	127
9.5.89. FOUT_S02	
9.5.90. FOUT S03	130
9.5.91. FOUT_S04	133
9.5.92. FOUT_S05	134
9.5.93. FOUT_S06	
9.5.94. FOUT_S07	
9.5.95. FOUT_\$10	
9.5.96. FOUT_\$11	
9.5.97. FOUT_\$12	
9.5.98. FOUT_S13	
9.5.99. FOUT_S14	
9.5.100. FOUT_S15	
9.5.101. FOUT_S16	
9.5.102. FOUT_S17	
9.5.103. FOUT_S20	
9.5.104. FOUT_S21	
9.5.105. FOUT_S22	
9.5.106. FOUT_S23	
9.5.107. FOUT_S24	
9.5.108. FOUT_S25	
9.5.109. FOUT_S26	
9.5.110. FOUT_S27	
9.5.111. FOUT_S30	
9.5.112. FOUT_S31	
9.5.113. FOUT SEL	164

9.5.114. FIN S0	164
9.5.115. FIN S1	
9.5.116. FIN S2	
9.5.117. FIN S3	167
9.5.118. FIN S4	
9.5.119. FIN S5	
9.5.120. FIN S6	170
9.5.121. FIN S7	171
9.5.122. FIN_S8	172
9.5.123. FIN_S9	
9.5.124. FIN_S10	174
9.5.125. FIN_S11	
9.5.126. FIN_S12	
9.5.127. FIN_S13	
9.5.128. FIN_S14	
9.5.129. FIN_S15	
10. SPI 模块	
10.1. 功能概述	180
10.2. 模块框图	181
10.3. 寄存器列表	181
10.4. 寄存器详细说明	181
10.4.1. SPI CON	
10.4.2. SPI_BAUD	
10.4.3. SPI_DATA	
10.4.4. SPI_STA	
10.5 使用流程说明	183
11. UARTO/1 模块	184
11.1. 功能概述	18/
11.2. 模块框图	104
11.3. 寄存器列表	
11.3. 奇仔ன列农	184
11.4.1. UART0_CON0	
11.4.2. UART0_CON1	
11.4.3. UARTO_STA	
11.4.4. UARTO_BAUDO	
11.4.5. UARTO_BAUD1	,
11.4.6. UART0_DATA 11.4.7. UART1_CON0	
11.4.8. UART1_CON1	
11.4.9. UART1 STA	
11.4.10. UART1_STA	
11.4.11. UART1_BAUD1	
11.4.12. UART1_DATA	
11.4.13. UART1 DMACON	
11.4.14. UART1_DMAADRH	
11.4.15. UART1 DMAADRL	191
11.4.16. UART1 DMALEN	
11.5. 使用流程说明	
12. I2C 模块	
12.1. 功能概述	
12.2. 功能描述	
12.2.1. 主机发送	
12.2.2. 主机接收	
12.2.3. 从机接收	
12.2.4. 从机发送	197

12.2.5. 广播模式	198
12.3. 寄存器列表	
12.4. 寄存器详细说明	
12.4.1. I2C CON	
12.4.2. I2C STA	
12.4.3. I2C_ADR	
12.4.4. I2C_DATA	
13. Simple Timer 模块	
13.1. 功能概述	
13.1.1. Timer0-3	
13.1.2. Wake Up Timer	
13.1.3. Buzzer	
13.2. 模块框图	
13.3. 寄存器列表	
13.4. 寄存器详细说明	
13.4.1. TMR0_CONL	
13.4.2. TMR0_CONH	
13.4.3. TMR0_CNTL	207
13.4.4. TMR0_CNTH	
13.4.5. TMR0_PRL	207
13.4.6. TMR0_PRH	
13.4.7. TMR0_PWML	208
13.4.8. TMR0_PWMH	
13.4.9. TMR0_PWML1	
13.4.10. TMRO_PWMH1	
13.4.11. TMR1_CONL	
13.4.12. TMR1_CONH	
13.4.13. TMR1_CNTL	
13.4.14. TMR1_CNTH	
13.4.15. TMR1_PRL	
13.4.16. TMR1_PRH	
13.4.17. TMR1_PWML	
13.4.18. TMR1_PWMH	
13.4.19. TMR1_PWML1	
13.4.20. TMR1_PWMH1	
13.4.21. TMR2_CONL	
13.4.22. TMR2_CONH	
13.4.23. TMR2_CNTL	
13.4.24. TMR2_CNTH	
13.4.25. TMR2_PRL	
13.4.26. TMR2_PRH	
13.4.27. TMR2_PWML	
13.4.28. TMR2_PWMH	
13.4.29. TMR3_CONL	
13.4.30. TMR3_CONH	
13.4.31. TMR3_CNTL	
13.4.32. TMR3_CNTH	
13.4.33. TMR3_PRL	
13.4.34. TMR3_PRH	
13.4.35. TMR3_PWML	
13.4.36. TMR3_PWMH	
13.4.37. WUT_CONL	
13.4.38. WUT_CONH	
13.4.39. WUT_CNTL	
13.4.40. WUT_CNTH	
13.4.41. WUT_PRL	221

13.4.42. WUT PRH	221
13.4.43. WUT PWML	221
13.4.44. WUT_PWMH	221
13.4.45. BUZ_CON	222
13.4.46. BUZ_DIV	
13.5. 使用流程说明	223
13.5.1. 计数器/定时器工作模式	223
13.5.2. 捕获工作模式	
13.5.3. PWM 工作模式	
14. Normal Timer 模块	
14.1. 功能概述	
14.1.1. 计数源选择	
14.1.2. 输入捕获源	
14.1.3. 输入捕获模式	
14.1.4. PWM 模式	226
14.1.5. 红外模式	226
14.2. 模块框图	227
14.3. 寄存器列表	
14.4. 寄存器详细说明	
14.4.1. TMR ALLCON	
14.4.2. TMR4_CON0	
14.4.3. TMR4_CON1	230
14.4.4. TMR4 CON2	230
14.4.5. TMR4 CON3	231
14.4.6. TMR4 EN	
14.4.7. TMR4_IE0	
14.4.8. TMR4 CLR0	
14.4.9. TMR4 CNT0	
14.4.10. TMR4_CNT1	
14.4.11. TMR4 CAP10	
14.4.12. TMR4 CAP11	
14.4.13. TMR4 CAP20	
14.4.14. TMR4 CAP21	
14.4.15. TMR4 CAP30	
14.4.16. TMR4 CAP31	
14.4.17. TMR4 CAP40	
14.4.18. TMR4 CAP41	
14.4.19. TMR4 FLAG0	
14.5. 使用流程说明	
14.5.1. 计数器/定时器工作模式	
14.5.2. 捕获工作模式	
14.5.3. PWM 工作模式	
14.5.4. 红外工作模式	
15. Super timer 模块(增强型 PWM 模块)	
15.1. 功能概述	
15.1.1. 基本动作	
15.1.2. 增强型 STMR 操作	
15.2. 模块框图	260
15.3. 寄存器列表	
15.4. 寄存器详细说明	
15.4.1. STMR CON0	
15.4.2. STMR_CNTMD	
15.4.3. STMR CNTCLR	
15.4.4. STMR CNTTYPE	
_	

15.4.5. STMR CNTEN	268
15.4.6. STMR LOADEN	269
15.4.7. STMR_CMPCL	270
15.4.8. STMR_CMPCH	271
15.4.9. STMR_PWMEN	
15.4.10. STMR_PWMVALA	
15.4.11. STMR_PWMVALB	
15.4.12. STMR_PWMBEN	
15.4.13. STMR_PWMMSKEN	
15.4.14. STMR_PWMMSKD	
15.4.15. STMR_BRKEN	276
15.4.16. STMR_BRKCON	
15.4.17. STMR_BRKDAT	
15.4.18. STMR_BRKFILT	
15.4.19. STMR01_DT	
15.4.20. STMR23_DT	
15.4.21. STMR45_DT	
15.4.22. STMR_DTCON	279
15.4.23. STMR_DTEN	
15.4.24. STMR_EDGESEL	
15.4.25. STMR_DTDAT	282
15.4.26. STMRn_IE (n=0~5)	283
15.4.27. STMRn_IF (n=0~5)	284
15.4.28. STMRn PRL (n=0~5)	284
15.4.29. STMRn PRH (n=0~5)	285
15.4.30. STMRn CMPAL (n=0~5)	
15.4.31. STMRn CMPAH (n=0~5)	
15.4.32. STMRn_CMPBL(n=0~5)	205
15.4.33. STMRn CMPBH (n=0-5)	205
15.4.34. STMRn_PSC (n=0~5)	
15.4.35. STMRn_CNTL (n=0~5)	
15.4.36. STMRn_CNTH (n=0~5)	
15.5. 使用流程说明	286
16. CRC 校验模块	287
16.1. 功能概述	
16.2. 基本功能	
16.2.1. CRC 基本介绍	
16.2.2. 支持的 CRC 协议	
16.3. 模块框图	
16.4. 寄存器列表	
16.5. 寄存器详细说明	289
16.5.1. CRC_CON	
16.5.2. CRC_REG	
16.5.3. CRC_FIFO	
16.5.4. CRC_DATA0	
16.5.5. CRC DATA1	
16.5.6. CRC_DATA2	290
16.5.7. CRC_DATA3	290 290
	290 290
16.5.7. CRC_DATA3	290 290 290
16.5.7. CRC_DATA3 16.6. 使用流程说明	290 290 290 292
16.5.7. CRC_DATA3	290 290 290 292
16.5.7. CRC_DATA3	
16.5.7. CRC_DATA3	

	17.2.3. 自举模式	293
	17.2.4. 自动计算 CRC	293
	17.2.5. 类 EEPROM 使用	294
	17.2.6. 支持用户区配置	294
	17.2.7. NVR 系统信息区域说明	295
	17.3. 模块框图	298
	17.4. 寄存器列表	
	17.5. 寄存器详细说明	299
	17.5.1. FLASH CON	
	17.5.2. FLASH_STA	300
	17.5.3. FLASH_DATA	
	17.5.4. FLASH_TIMEREG0	
	17.5.5. FLASH_TIMEREG1	
	17.5.6. FLASH_CRCLEN 17.5.7. FLASH_PASSWORD	
	17.5.8. FLASH ADDR	
	17.5.9. FLASH TRIM	
	17.5.10. FLASH LOCK	
	17.5.11. FLASH DMASTADR	
	17.5.12. FLASH DMALEN	
	17.5.13. FLASH BOOTCON	304
	17.5.14. FLASH_ERRSTA	305
	17.5.15. FLASH DEBUGSTA	306
	17.5.16. FLASH_FUNCON	307
	17.6. 使用流程说明	307
18.	模数转换器(ADC)	308
	18.1. 功能概述	308
	18.2. 基本功能	
	18.2.1. 外部触发源	
	18.2.2. 内部采样通道描述	
	18.2.3. 单通道触发模式	309
	18.2.4. 多通道触发模式	310
	18.2.5. 触发延迟模式	311
	18.2.6. 加速模式	312
	18.2.7. 数字比较器	312
	18.2.8. 模拟校准/数字校准	313
	18.3. 模块框图	
	18.4. 寄存器列表	
	18.5. 寄存器详细说明	
	18.5.1. ADC_CFG0	
	18.5.2. ADC_CFG1	
	18.5.4. ADC_CFG2	
	18.5.5. ADC_CFG3	
	18.5.6. ADC STA	
	18.5.7. ADC_STA	
	18.5.8. ADC_DATAL0	
	18.5.9. ADC DATAH1	
	18.5.10. ADC DATAL1	

	18.5.11. ADC_DATAH2	
	18.5.12. ADC_DATAL2	_
	18.5.13. ADC_CHS0	
	18.5.14. ADC_CHS1	
	18.5.15. ADC_CHS2	
	18.5.17. ADC_TRGS1	
	18.5.18. ADC_TRGS2	
	18.5.19. ADC CMPDATAH	
	18.5.20. ADC CMPDATAL	
	18.6. 使用流程说明	
19.	模拟比较器(CMP0/1)	
	19.1. 功能概述	
	19.2. 模块框图	
	19.3. 引脚复用映射表	
	19.4. 功能配置流程图	
	19.5. 基本功能使用说明	
	19.5.1. 比较器工作模式使用说明	
	19.5.2. 短路保护功能使用说明	
	19.5.3. 恒流源功能使用说明	337
	19.6. 寄存器列表	227
	19.0. 司行協列表	33/
	19.7.1 CMP CON	220
	19.7.1. CMF_CON	330 330
	19.7.3. CMP STA	
	19.7.4. CMP0_CON0	340
	19.7.5. CMP0 CON1	341
	19.7.6. CMP0_CON2	342
	19.7.7. CMP0_CON3	
	19.7.8. CMP0_CON4	
	19.7.9. CMP0 CON5	
	19.7.10. CMP0_DHYH 19.7.11. CMP0_DHYL	
	19.7.12. CMP1 CON0	
	19.7.13. CMP1 CON1	346
	19.7.14. CMP1 CON2	
	19.7.15. CMP1 CON3	
	19.7.16. CMP1_CON4	
	19.7.17. CMP1_DHYH	
	19.7.18. CMP1_DHYL	
20.	运放模块	349
	20.1. 功能概述	349
	20.2. 引脚复用表	349
	20.3. 基本运放功能	
	20.4.1 00 工作	
	20.4.1. OP 工作模式使用说明	
	20.4.2. PGA 工作模式使用说明	
	20.4.3. PGA+PGA 串联工作模式使用说明	
	20.4.4. PGA+ADC 串联工作模式使用说明	356

	20.4.5. PGA2+CMP 串联工作模式使用说明	357
	20.4.6. 比较器工作模式使用说明	
	20.4.7. 关于 PGA 正相放大和负相放大的使用说明	359
	20.4.8. 关于运放内部偏置选择配置使用说明	360
	20.5. 模块框图	
	20.6. 寄存器列表	
	20.7. 寄存器详细说明	
	20.7.1. AMP CON0	
	20.7.2. AMP_CON1	
	20.7.3. AMP_CON2	
	20.7.4. AMP_CON3	
	20.7.5. AMP_CON4	
	20.7.6. AMP_CON5	
	20.7.8. AMP_CON0	
	20.7.9. AMP CON8	
	20.7.10. AMP CON9	
	20.7.11. AMP_CON10	370
	20.7.12. AMP_CON11	371
21.	LED 模块	372
	21.1. 功能概述	
	21.2. 功能框图	
	21.3. 数据结构	
	21.3.1. COM 扫描的数据结构	373
	21.3.2. SEG 扫描的数据结构	
	21.4. 寄存器列表	374
	21.5. 寄存器详细说明	375
	21.5.1. LED SEGCONL	
	21.5.2. LED SEGCONH	
	21.5.3. LED_COMCON	
	21.5.4. LED_CON	
	21.5.5. LED_TIMECON	
	21.5.6. LED_DMAADDRL	
	21.5.7. LED_DMAADDRH	
	21.6. 使用流程说明	3//

1. 产品概述

1.1. 说明

TX8C126x 是一款高性能低功耗的 8051 内核 MCU,工作主频最高为 48MHz,内置 16K 字节 LogicFlash (以下简称 FLASH)存储器,支持类 EEPROM 功能,2K 字节 SRAM。

模拟资源:

1 个 12 位 500KSPS 的 SARADC、2 个多功能比较器, 3 个运算放大器。

定时器资源:

- 6个16位高级定时器(3对互补PWM、带死区控制或6路独立PWM)、
- 5个16位通用定时器(都支持Capture、Count、PWM功能)、
- 1个16位唤醒定时器(都支持Capture、Count、PWM功能)、
- 1个8位蜂鸣器(支持PWM、Count功能)、
- 1个看门狗定时器。

标准的通信接口:

1个SPI接口、1个IIC接口和2个UART接口(其中UART1支持DMA工作方式)。

LED 显示功能:

支持多达 8COM x 12SEG。

GPIO:

内置 30K 上下拉电阻,多个驱动档位可配置,每个 IO 都可以作为 ADC 的输入,每个 IO 都可以作为 IO 中断唤醒口。

支持宽范围电压供电,工作电压为 2.4V ~ 5.5V,工作温度范围-40℃ ~ +105℃。多种省电工作模式保证低功耗应用的要求,最低功耗模式 5uA。

TX8C126x 产品系列包含 TX8C1260, TX8C1261 等多个产品型号, 不同产品型号资源和封

装形式都不相同。

应用场合:

- 小家电
- 玩具
- 电子烟
- 蓝牙充电仓、无线充
- 覆盖 003 系列 MCU 产品的应用
- 部分电机控制系列 MCU 产品应用

1.2. 特性

▶内核

- 超高速 8051 内核(1T)
- 指令全兼容传统 8051
- 工作最大主频: 48MHz
- 32个中断源,支持硬件两级优先级
- 支持在线调试接口
- 支持代码加密
- 支持带电烧录

▶工作电压

- 2.4V ~ 5.5V宽电压范围供电

▶存储器

- 16K字节Flash,用于存储用户代码
- 2K字节RAM
- 支持EEPROM功能

▶时钟

- 内部 1~48MHz高精度HIRC, 支持校准(误差±1%)
- 内部 64KHz低速LIRC, 支持校准(误差±1%)
 - 外部 32.768 KHz/8~40MHz晶振,需要外部加电容

▶ 复位

- 上电复位
- 欠压复位
- 复位脚复位
- 看门狗溢出复位

- LVD低压检测复位,提供8级低压检测电压

> 数字外设

- 1个SPI高速串行接口,支持主从模式
- 1个I2C接口,支持多主和从机模式
- 2个UART接口,最大支持4Mbps,其中UART1支持DMA模式

> 定时器资源

- 6个16位高级定时器,支持3对互补输出,支持死区插入和事件刹车功能,支持单脉冲模式。或支持6个独立PWM输出
- 5个16位通用定时器,都支持Capture、Count、PWM功能
- 1个16位唤醒定时器
- 1个8位蜂鸣器定时器
- 1个看门狗定时器

▶高安全性

- 支持32 bit CRC效验,保证数据准确性

▶低功耗

- 支持IDLE、STOP、SLEEP低功耗模式
- 静态功耗 5uA (@25℃, 5V供电), 3uA(@25℃, 3.3V供电)
- 低功耗唤醒时间小于 100us

▶1 个高精度 12 位模数转换器 (ADC)

- 转换时钟最快支持 10MHz, 最大采样率 500KSPS
- 失调校正step 2mV, DNL +-2 INL +-4
- 外部输入通道任意IO可选,2个模拟通路
- ADC有效位约 10bit (ADC通过内部开关接到芯片的VCC,以此电压作为ADC的参考电压,ADC满量程等于VCC)

▶2 个模拟比较器(ACMP)

- 2个低失调比较器,校正step 1mV
- 比较器支持负端输入精准BG或者VDDADC的 120 个分压档位
- 两个比较器都支持轨道轨输入模式,正端支持 6 个GPIO,负端支持 2 个GPIO

▶3个可编程增益放大器 (PGA)

- 3个可编程高增益放大器,多级可配置增益(1/2/4/8/16/32/64/128/256/512)
- 支持OP工作模式,外接电阻调节放大增益

▶ LED显示功能

- 支持多达 8COMx 12SEG

➤ GPIO

- 所有端口均可输入输出 5V 信号

- 均支持上升沿/下降沿/双边沿中断
- 均支持上/下拉电阻功能
- 均支持唤醒功能
- 可编程驱动能力,驱动电流范围 4mA ~ 64mA
- 支持OD输出低/高模式。
- 支持独立控制的上下拉电阻,阻值 30KΩ

▶高可靠性

- ESD HBM 6KV
- Latch-up ±200mA @25℃
- ▶96 位的芯片唯一 ID (UID)

▶工作温度范围

- -40°C [~] +105°C

2. 中央处理器

TX8C126x 全兼容传统的 8051 微控制器,所有指令的助记符和二进制码都和 8051 兼容。 TX8C126x 的处理器采用了一些体系结构上的优化,扩展了 SP, DPTR 等常用的寄存器,相比 传统的 8051 在性能上面有了很大的提升。

TX8C126x 内部的 ALU 配合内部的 ACC(0xE0)、B(0xF0)、PSW(0xD0)寄存器可以实现各种 8 位运算操作。

ALU 可以进行典型操作如下:

- ▶基本算术运算:加法、减法、乘法、除法
- ▶其他算术运算: 自加、自减、BCD调整、比较
- ▶逻辑运算: 与、或、异或、取反、移位
- ▶ 布尔比特运算:置位、清零、取反、按位判断跳转、进位操作

2.1. 累加器 (ACC)

ALU 是 8Bit 宽的算术逻辑单元,MCU 所有的数学、逻辑运算均通过它来完成。它可以对数据进行加、减、移位及逻辑运算; ALU 也控制状态位(PSW 状态寄存器中),用来表示运算结果的状态。

ACC 寄存器是一个 8Bit 的寄存器, ALU 的运算结果可以存放在此。

Addr = 0xE0 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	ACC	累加器寄存器	RW	0x0

2.2. 寄存器 (B)

B 寄存器在使用乘法和除法指令时使用,乘法结果高 8bit,除法结果低 8bit。如不使用乘除法指令,也可作为通用寄存器使用。

Addr = 0xF0 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	В	B寄存器	RW	0x0

2.3. 堆栈指针寄存器(SP)

SP 寄存器指向堆栈的低 8bit 地址, 复位后默认值为 0x07。该 SP 的值可以修改。

影响 SP 的操作有: 指令 PUSH、LCALL、ACALL、POP、RET、RETI 以及进入中断。

Addr = 0x81 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	SP	堆栈指针寄存器	RW	0x7

2.4. 堆栈指针寄存器 (SPH)

SPH 寄存器指向堆栈高 8bit 地址,有效位 3bit,复位后默认值位 0x7,与 SP 组合使用,意味着堆栈的区域从 RAM 地址的 0x707 开始。该值可以修改,如果将堆栈区域设置为 0x10B 开始,则在复位后将 SPH 和 SP 的值分别设置为 0x1 和 0x0A。

影响 SPH 的操作有:指令 PUSH、LCALL、ACALL、POP、RET、RETI 以及进入中断。

Addr = 0x9B (SFR)

Bit(s)	Name	Description	R/W	Reset
7 : 3	1	- 4	RO	0x0
2: 0	SPH	堆栈指针寄存器高位	RW	0x7

2.5. 数据指针寄存器 (DPTRO/DPTR1)

数据指针主要用在 MOVX, MOVC 指令中, 其作用是定位 RAM 与 ROM 的地址。芯片内部有两个数据指针寄存器 DPTR0 与 DPTR1, 通过 DPSEL 寄存器选择。

每组指针包括两个 8 位寄存器: DPTRO={DPHO, DPLO}; DPTR1={DPH1, DPL1}。

Addr = 0x82 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DPLO	DPTRO 数据指针寄存器低八位	RW	0x00

Addr = 0x83 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DPH0	DPTRO 数据指针寄存器高八位	RW	0x00

Addr = 0x84 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DPL1	DPTR1 数据指针寄存器低八位	RW	0x00

Addr = 0x85 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DPH1	DPTR1 数据指针寄存器高八位	RW	0x00

2.6. 数据指针控制寄存器(DPCFG)

Addr = 0x86 (SFR)

Bit(s)	Name	Description	R/W	Reset
		中断地址起始区域选择		
		0x0: 中断起始地址为 0x000C		
7 : 6	IA	0x1: 中断起始地址为 0x80C	RW	0x0
		0x2: 中断起始地址为 0x100C		
		0x3: 中断起始地址为 0x600C		
		DPTRO 加1或减1选择		
		OxO: DPTRO 加 1		
		Ox1: DPTRO 减 1		
		Note: DPSEL 为 0, DPAID 为 1 时 DPTRO 指针会在		
		以下指令之后根据 DPIDO 选择自动加 1 或者减 1;		
5	DPID0	MOVC A, @A+DPTR	RW	0x0
		MOVX A, @DPTR		
		MOVX @DPTR, A		
	J.	INC DPTR		
	×27	如果 DPSEL 为 0, DPAID 为 0, 则只在指令 INC DPTR		
	X	后根据 DPIDO 选择自动加1或者减1;		
	175	DPTR1 加1或减1选择		
	(2)	OxO: DPTR1 加1		
《》		Ox1: DPTR1 减 1		
4	DPID1	Note: DPSEL 为 1, DPAID 为 1 时 DPTR1 指针会在	DW	00
4	ו אג זאז	以下指令之后根据 DPID1 选择自动加 1 或者减 1;	RW	0x0
		MOVC A, @A+DPTR		
		MOVX A, @DPTR		
		MOVX @DPTR, A		

		TMC DDTD		
		INC DPTR 如果 DPSEL 为 1, DPAID 为 0, 则只在指令 INC DPTR		
		后根据 DPID1 选择自动加 1 或者减 1;		
		DPTRO/DPTR1 自加自减使能		
		0x0: 不使能 		
		0x1: 使能		
		Note: 使能之后,以下指令会根据 DPIDO 和 DPID1	1/.	0
3	DPAID	以及 DPSEL 的配置使 DPTRO 或者 DPTR1 在指令后自	RW	0x0
		加 1 自减 1;		
		MOVC A, @A+DPTR	"	
		MOVX A, @DPTR		
		MOVX @DPTR, A		
		DPSEL 自动翻转使能		
		0x0: 不使能		
		0x1: 使能		
		Note: 使能之后,以下指令会使 DPTR 指针在 DPTRO		
		和 DPTR1 之间自动切换;		
		MOVC A, @A+DPTR		
2	DPTSL	MOVX A, @DPTR	RW	0x0
		MOVX @DPTR, A		
		INC DPTR		
		MOV DPTR, #DATA16		
		 如当前指令使用 DPTRO 作为指针,下一条 DPTR 操		
	¥	作指令将使用 DPTR1 作为指针;此功能下更改		
	7.77	 DPSEL 的值可影响下一条 DPTR 指令的指针选择;		
1	-1/2	-	RW	0x0
14	(A) (A)	选择 DPTR0 /DPTR1		
1	X-X	OxO: 指针 DPTRO 有效		
	,	Ox1: 指针 DPTR1 有效		
-		Note: DPTSL 使能后会使 DPSEL 在使用 DPTR 操作		
0	DPSEL	指令后自动翻转,相关指令见 DPTSL;	RW	0x0
		MOV DPTR, #DATA16 指令可以根据 DPSEL 的选择将		
		立即数输入 DPTRO 或者 DPTR1 相关寄存器;		
		並呼		

2.7. 程序状态寄存器 (PSW)

Addr = OxDO (SFR)

Bit(s)	Name	Description	R/W	Reset
		进位标志位		
7	CY	0x0: 无进位	RW	0x0
		0x1: 加法位7有进位或减法位7有借位	XX	0
		辅助进位标志位	7	
6	AC	0x0: 无进位	RW	0x0
		0x1: 加法位3有进位或减法位3有借位		
5	F0	通用标志位 0	RW	0x0
		寄存器组选择位		
		0x0: 寄存器组 0		
4: 3	RS1, RS0	0x1: 寄存器组 1	RW	0x0
		0x2: 寄存器组 2		
		0x3: 寄存器组 3		
		溢出标志位		
2	OV	0x0: 算术或逻辑运算无溢出	RW	0x0
		0x1: 算术或逻辑运算有溢出		
1	F1	通用标志位1	RW	0x0
		奇偶校验标志位		
0	P	0x0: ACC 中 1 为偶数	RW	0x0
	>	0x1: ACC 中 1 为奇数		

2.8. **PCON1**

Addr = 0x9C (SFR)

Bit(s)	Name	Description	R₩	Reset
		MOVX @RI 寻址选择位		
7	PCON1_SEL	OxO: MOVX @RI 寻址 IRAM	RW	0x1
		Ox1: MOVX @RI 寻址 XSFR		
6	_		RW	0x0

5	ADR_OV_CLR	地址越界清零 写 1 清掉地址越界标志位,写零无效	RW	0x0
4	ADR_OV_IF	地址越界标志 0x0: PC 地址未越界 0x1: PC 地址越界	RW	0x0
3	ADROV_EN	PC 地址越界功能使能 0x0: 地址越界功能不使能 0x1: 地址越界功能使能 Note: 使能后, 当 PC 运行在 0x0-0x4000 和 0x6000-0x67FF 之外的区域,将会产生越界标志,并复位;	RW	0x0
2: 0	PCON1_VAL	MOVX @RI 寻址高位 可使该指令在 IRAM 或者 XSFR 的 0 [~] 2K 空间进行 寻址,寻址地址为{PCON1_VAL,@RI}	RW	0x0

2.9. 程序计数器 (PC)

程序计数器 (PC) 控制程序内存 FLASH 中的指令执行顺序,它可以寻址整个 FLASH 的范围,取得指令码后,程序计数器 (PC) 会自动加一,指向下一个指令码的地址。但如果执行跳转、条件跳转、向 PCL 赋值、子程序调用、初始化复位、中断、中断返回、子程序返回等操作时,PC 会加载与指令相关的地址而不是下一条指令的地址。

当遇到条件跳转指令且符合跳转条件时,当前指令执行过程中读取的下一条指令将会被 丢弃,且会插入一个空指令操作周期,随后才能取得正确的指令。反之,就会顺序执行下一 条指令。

3. 存储器

TX8C126x 有内部有 3 种存储器: XDATA, IDATA, 程序存储器。
IDATA 大小为 256 字节, XDATA 大小为 (2K-256) 字节,程序存储器大小为 16K 字节。

3.1. 程序存储器

TX8C126x 的程序指针为 16 位,最大寻址空间可达 64K 字节,实际只实现了 16K 字节的程序存储空间。

图 3-1 程序存储空间地址映射

3.2. XDATA 数据存储器

XDATA 分为两部分: 0x6000[~]0x67FF 为数据存储空间, 0x7000[~]0x77FF 为 XSFR 空间。(注意:本文中所有 XSFR 的地址都是指偏移地址, XSFR 实际逻辑地址=对应 XSFR 偏移地址+0x7000【基地址】;)

3.3. **IDATA**

IDATA 内部数据存储器空间大小为 256 字节。内部数据存储器的地址空间的低 128 字节可以直接访问,高 128 字节和 SFR 共用一个地址空间,直接访问高 128 字节会访问到 SFR空间,高 128 字节数据存储器只能通过间接寻址方式访问。

图 3-2 数据存储器地址映射

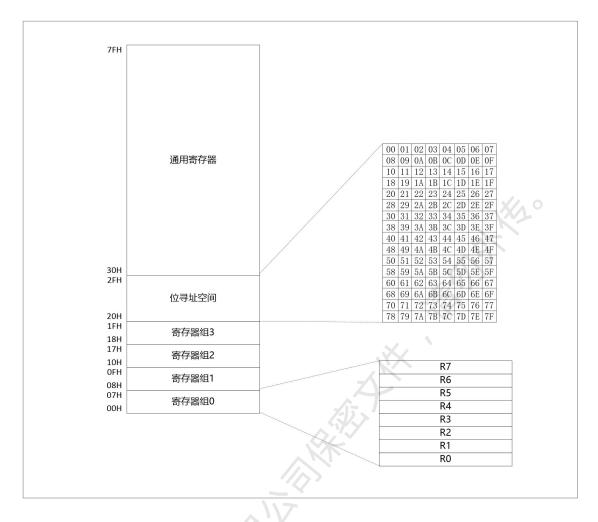


图 3-3 内部低 128 字节数据空间映射

3.4. **SFR** 空间

表 3-1 SFR 地址空间

	0Н/8Н	1Н/9Н	2Н/АН	ЗН/ВН	4Н/СН	5H/DH	6Н/ЕН	7Н/ГН
F8H	CMP1_CONO	UART1_DMAADDRH	UART1_DMAADDRL	UART1_DMALEN	ADC_CFG4	UART1_DMACON	-	FLASH_FUNCON
F0H	В	-	UART1_CON	UART1_CON1	UART1_STA	UART1_BAUDO	UART1_BAUD1	UART1_DATA
Е8Н	TMR4_CAP20	TMR4_CAP21	TMR4_CAP30	TMR4_CAP31	TMR4_CAP40	TMR4_CAP41	TMR4_FLAGO	-
ЕОН	ACC	-	TMR4_CLR0	TMR4_CLR1	TMR4_CNTO	TMR4_CNT1	TMR4_CAP10	TMR4_CAP11
D8H	WDT_CON	WDT_KEY	TMR4_CONO	TMR4_CON1	TMR4_CON2	TMR4_CON3	TMR4_EN	TMR4_IE0
DOH	PSW	TMR_ALLCON	UARTO_CON	UARTO_CON1	UARTO_STA	UARTO_BAUDO	UARTO_BAUD1	UARTO_DATA
С8Н	CMPO_CONO	SPIO_BAUD	SPIO_STA	SPIO_DAT	I2C_CON	I2C_DAT	I2C_ADR	I2C_STA
СОН	FLASH_LOCK	CRC_CON	CRC_REG	CRC_FIF0	CRC_DATA0	CRC_DATA1	CRC_DATA2	CRC_DATA3
В8Н	IPO	SPIO_CON	LP_CON	FLASH_TRIM	FLASH_DMASTADR	FLASH_DMALEN	FLASH_BOOTCON	FLASH_ERRSTA
ВОН	P3	IP1	IP2	IP3	IP4	IP5	IP6	IP7
А8Н	IEO	IE1	IE2	IE3	FLASH_TIMEREG1	FLASH_CRCLEN	FLASH_PASSWORD	FLASH_ADDR
АОН	P2	ADC_TRGS2	ADC_CMPDATAH	ADC_CMPDATAL	FLASH_CON	FLASH_STA	FLASH_DATA	FLASH_TIMEREGO
98H	ADC_DATAL2	ADC_CHS0	ADC_CHS1	SPH	PCON1	ADC_CHS2	ADC_TRGS0	ADC_TRGS1
90Н	P1	ADC_CFG2	ADC_CFG3	ADC_DATAHO	ADC_DATALO	ADC_DATAH1	ADC_DATAL1	ADC_DATAH2
88H	-		(17) (2)	_	-	WKUPCONO	WKPEND	SYSPEND
80H	P0	SP	DPLO	DPH0	DPL1	DPH1	DPCFG	PCONO

4. 时钟系统

4.1. 时钟系统概述

系统片上有一个 48 MHz 的高速高精度 RC 振荡器,以及内部 PMU 里面集成了一个 64 KHz 的低速 RC 振荡器,支持一个外接的 $32.768 \text{KHz}/8^2 40 \text{MHz}$ 的晶体振荡器。

4.2. 时钟系统主要功能

TX8C126x 芯片的时钟源来自于 3 个不同的时钟,分别是片外 32. 768KHz 的低速晶振或者 8 $^{\sim}$ 40MHz 的高速晶振,片内 64K 低速 RC 和片内 48M 高速 RC。如图 4 $^{-1}$ 所示,系统时钟可以通过 CLK_CON0[1:0]对上述三个时钟源进行选择,选择后的时钟为芯片工作最快时钟(下文称为 sys_clk_pre)。如图 4 $^{-2}$ 所示,sys_clk_pre 再经过 CLK_CON2[3:0]进行分频,分频后时钟为系统时钟(下文称为 sys_clk),系统中大部分外设与模数混合模块都将使用 sys_clk,例如 UART、SPI、CRC32 等外设都使用 sys_clk。如图 4 $^{-2}$ 所示,GPI0 口的滤波时钟,WUT 模块时钟和低电检测这几个特殊的模块会使用 sys_clk,片外晶振,片内 64K 低速 RC,片内 48M 高速 RC 分频后时钟进行选择。

4.3. 时钟系统框图

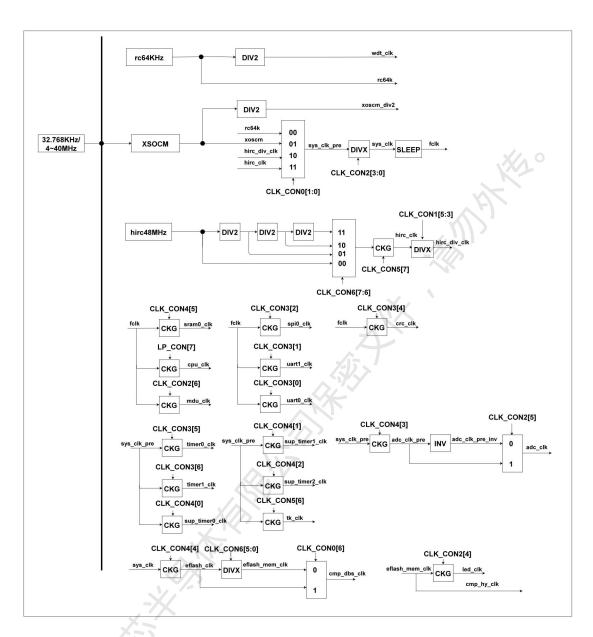


图 4-1 系统时钟域时钟结构框图

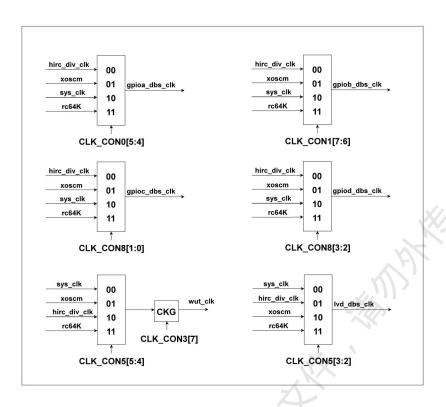


图 4-2 模块异步时钟域时钟结构框图

4.4. 系统振荡器

4.4.1. 内部低速 RC 振荡器

PMU 内部集成了一个 64KHz 的常开低速 RC 振荡器,当芯片上电时,系统工作在该 64KHz 的时钟,完成上电复位过程,等到系统复位释放以后才开始跑程序。

4.4.2. 内部高速 RC 振荡器

芯片内部集成了一个片上高速 RC 振荡器,支持最大 48MHz 的输出时钟给系统用,默认是关闭的,需要用户在程序中通过配置系统寄存器 CLK_ACONO[7]=1,打开高速 RC 振荡器,也可以通过配置 CLK_ACONO[7]=0,关闭该时钟源。注意在关闭该时钟前,系统需要先切换到低速 RC 振荡器。该高速 RC 振荡器可以通过量产过程中的校准程序校准,保证其精度满足应用方案需求。

4.4.3. 外部晶体振荡器

芯片內部集成了一个晶体振荡器启振电路可以支持外部低速 32.768KHz 的无源晶体或者 $8^{\sim}40$ MHz 的高速无源晶体,作为系统的工作时钟源。默认时关闭的,可以通过配置系统寄存器 $CLK_XOSC[3]=1$,打开 32.768KHz 的低速时钟源;也可以配置 $CLK_XOSC[3]=0$,关闭 32.768KHz 的低速时钟源。可以通过配置系统寄存器 $CLK_XOSC[7]=1$,打开 $8^{\sim}40$ MHz 的高速时钟源;也可以配置 $CLK_XOSC[7]=0$,关闭 $8^{\sim}40$ MHz 的高速时钟源。

5. 复位系统

5.1. 上电复位

芯片上电的 POR 复位。

5.2. 掉电复位

芯片掉电的 BOR 复位。

5.3. 看门狗复位

芯片有一个独立于系统运行的看门狗模块,用于保护系统异常发生之后的复位重启系统。看门狗模块工作时钟是常开的 64KHz 的低速 RC 的 2 分频时钟,即工作在 32KHz 的独立于系统时钟的时钟。默认配置是 2 秒钟复位一次系统。所以在用户程序中需要在看门狗复位之前要喂狗,使其重新计时。用户可以配置看门狗复位时间间隔范围从 7.8mS ~ 256S。可以选择看门狗产生中断,不复位。中断和复位只能二选一。

表 5-1 WDT 寄存器列表

Address	Register Name	Description
0xD8 (SFR)	WDT_CON	Watchdog Control Register
0xD9 (SFR)	WDT_KEY	Watchdog Key Register

5.3.1. **WDT_CON**

Addr = 0xD8 (SFR)

Bit(s)	Name	Description	R/W	Reset
		WDT 唤醒功能使能位	./	
		写 WDT_KEY=OxEE,置位	KXT.	
7	WAKEEN	写 WDT_KEY=0x22,复位	RO	0x0
		0x0: 关闭	1	
		0x1: 打开		
		WDT 计数器计满标记位		
6	WDTPND	写 WDT_KEY=0xAA,清掉该标记位	RO	0x0
0	WDIFND	0x0: 计数器未计满	ΚU	UXU
		0x1: 计数器计满		
		WDT 中断功能使能位		
		写 WDT_KEY=0x5A,置位		
5	INTEN	写 WDT_KEY=0xA5,复位	RO	0x0
		0x1: 打开中断功能		
		0x0: 打开复位功能		
		WDT 使能位		
		写 WDT_KEY=0xCC,置位		
4	WDTE	写 WDT_KEY=0xDD,复位	RW	0x1
		0x0: 关闭 watchdog 功能		
	7.5	0x1: 打开 watchdog 功能		
	1/5	看门狗定时时间		
	-1(2-)	每次配置该位域之前必须先写 WDT_KEY=0x55		
, i	X-IV	0x0: 7.8125 毫秒钟		
1	Ç1.	0x1: 15.625 毫秒钟		
3 : 0	PSR	0x2: 31.25 毫秒钟	RW	0x8
		0x3: 62.5 毫秒钟		
		0x4: 125 毫秒钟		
		0x5: 250 毫秒钟		
		0x6: 500 毫秒钟		

0x7:	1 秒钟		
0x8:	2 秒钟		
0x9:	4 秒钟		
OxA:	8 秒钟		
0xB:	16 秒钟		
0xC:	32 秒钟		
0xD:	64 秒钟		
OxE:	128 秒钟	KYZ.º	
0xF:	256 秒钟		

5.3.2. **WDT_KEY**

Addr = 0xD9 (SFR)

Bit(s)	Name	Description	R/W	Reset
		喂狗数据寄存器		
		0x55:表示允许访问和设置 wdt_psr		
		0xDD: 关闭看门狗		
		0xCC: 启动看门狗工作		
		0xAA: 喂狗并清除 wdt_pending		
		0xA5: 美闭中断		
7: 0	WDT_KEY	0x5A: 开启中断	WO	0x0
	1	0x22: 关闭 wake up		
		OxEE: 开启 wake up		
	, 755	Note: 软件必须以一定的间隔写入 0xAA 完成喂狗		
	N/S	操作,否则,当计数器为0时,看门狗会产生复		
	-1(2)	位!当 pending 为 1 的时候,写入 0xAA 清除		
Ž	*	pending!		

5.4. 低电检测复位

PMU 内部集成了低电压检测和过流检测功能电路,用于检测 PMU 供电部分异常情况,并可以把检测到低电压和过流等异常情况通过中断方式上报给 CPU 进行系统异常处理程序。另

外低电压异常信号可以产生复位信号去复位系统,以免在低电压的情况下电路工作不正常而导致用户程序跑飞。低电压检测的阈值可以通过 LVD 控制寄存器设置。可以通过设置 LVD 控制寄存器对异常信号进行滤波去抖动,避免系统瞬态变化导致的正常电源压降而误发生意外低电复位系统的情况发生。

表 5-2 LVD 寄存器列表

Address	Register Name	Description
0x15A (XSFR)	LVD_CONO	LVD_CONO register
0x15B (XSFR)	LVD_CON1	LVD_CON1 register
0x15C (XSFR)	LVD_CON2	LVD_CON2 register
0x15D (XSFR)	LVD_CON3	LVD_CON3 register

5.4.1. **LVD_CON0**

Addr = 0x15A (XSFR)

Bit(s)	Name	Description	R/W	Reset
		LVD 中断和复位功能输出到系统使能位		
		Note: 使用 LVD 所有相关功能,必须把 LVDOE 设		
7	LVDOE	置位 1	RW	0x1
	-X	0x0: 关闭		
	X=5	0x1: 打开		
	ME	LVD VDD 低电压复位功能使能位		
6	LVDVDDRSTEN	0x0: 低电中断功能使能	RW	0x1
	X-1	0x1: 低电复位功能使能		
7	λ_1	LVD VCC 低电压复位功能使能位		
5	LVDVCCRSTEN	0x0: 低电中断功能使能	RW	0x1
		0x1: 低电复位功能使能		
		VCCA 电源电压低电检测阈值设置		
4: 2	PMULVD5SET	0x0: 2.0V	RW	0x0
		0x1: 2.2V		

		0x2: 2.4V		
		0x3: 2.7V		
		0x4: 3.0V		
		0x5: 3.7V		
		0x6: 4.0V		
		0x7: 4.3V		
1	PMULVD15EN	1.5V 数字逻辑系统工作电压 VDD 低电检测功能使	RW	0x1
		能位		
		0x0: 关闭		
		0x1: 打开		
0	PMULVD5EN	VCC 电源 VCC 电压低电检测功能使能位		
		0x0: 关闭	RW	0x1
		0x1: 打开		

5.4.2. LVD_CON1

Addr = 0x15B (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	_	- //	I	-
6	VDDOCPND	VDD 过流检测标记位	RW	0x0
		0x0: VDD 没有过流		
		0x1: VDD 过流		
		Note: 写 1 清除标记位!		
5	LVDVDDPND	VDD 低电检测标记位	RW	0x0
		0x0: VDD 没有低电		
		0x1: VDD 低电		
		Note: 写 1 清除标记位!		
4	LVDVCCPND	VCC 低电检测标记位	RW	0x0
		0x0: VCC 没有低电		
		0x1: VCC 低电		
		Note: 写 1 清除标记位!		
3	LVDVCCSYNDIS	LVD VCC 低电检测同步器关闭位	RW	0x1

		0x0: 打开同步器		
		0x1: 关闭同步器		
		VDD 过流滤波去抖功能关闭位		
2	VDDOCBPSEN	0x0: 打开滤波器	RW	0x1
		0x1: 关闭滤波器		
		VDD 低电滤波去抖功能关闭位		
1	LVDVDDBPSEN	0x0: 打开滤波器	RW	0x1
		0x1: 关闭滤波器	MY.	,
		VCC 低电滤波去抖功能关闭位		
0	LVDVCCBPSEN	0x0: 打开滤波器	RW	0x1
		0x1: 关闭滤波器		

5.4.3. **LVD_CON2**

Addr = 0x15C (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	_	- 177		_
6: 0	DBSHLMT	LVD 低电和过流异常检测滤波器高电平滤波时钟周期设置数目 Note: LVD 滤波时钟可以通过系统配置寄存器CLKCON5[3: 2]来选择。用户可以根据使用场景来选择滤波功能。滤波会导致异常发生到系统收到异常会有延迟时间,延迟时间会由设置的滤波的时钟周期和配置滤波高电平和低电平滤波周期数目共同决定,设置的滤波时钟周期越长,滤波周期数目越多会导致该延迟越长。用户在使用时可	RW	0x2
A.K.		以通过对该延迟的容忍度来合理配置。在有些对延迟比较敏感的应用场景可以关闭该滤波功能。		

5.4.4. **LVD_CON3**

Addr = 0x15D (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	_	_		_
		LVD 低电和过流异常检测滤波器低电平滤波时钟		
		周期设置数目		
		Note: LVD 滤波时钟可以通过系统配置寄存器		
	选择滤波功能。滤波会导致异常发生到系统 DBSLLMT 异常会有延迟时间,延迟时间会由设置的滤	CLKCON5[3: 2]来选择。用户可以根据使用场景来		
6: 0 D		选择滤波功能。滤波会导致异常发生到系统收到	RW	
		异常会有延迟时间,延迟时间会由设置的滤波的		0x2
		时钟周期和配置滤波高电平和低电平滤波周期数		
		目共同决定,设置的滤波时钟周期越长,滤波周		
		期数目越多会导致该延迟越长。用户在使用时可		
	以通过对该延迟的容忍度来合理配置。在有些对			
		延迟比较敏感的应用场景可以关闭该滤波功能。		

6. 低功耗管理

TX8C126x 芯片系统支持 3 个不同功耗等级的低功耗模式,从高到低依次是: Idle Mode、Stop Mode 和 Sleep Mode。其中功耗最低的是 Sleep 低功耗工作模式,该模式下常温整个芯片漏电可以低至 5uA。

6.1. Idle Mode 及唤醒

通过配置系统寄存器 LP_CON[7]=1,进入 Idle Mode。在 Idle 模式下只有 CPU 工作时钟被关闭,CPU 停止工作。通过中断方式唤醒 Idle Mode,唤醒之后会进入当前唤醒 Idle Mode的中断服务子程序并执行。

6.2. Stop Mode 及唤醒

通过配置系统寄存器 LP_CON[1]=1,进入 Stop Mode。在 Stop 模式下系统时钟被关闭, CPU 及大部分系统时钟域的外设停止工作。通过选择多种唤醒源来唤醒 Stop Mode,唤醒源包括:所有 GPIO 电平变化触发唤醒、比较器唤醒、WUT 唤醒、看门狗唤醒、触摸按键中断唤醒、LVDVCC(电源的低电压检测信号)中断唤醒。Stop Mode 唤醒之后会继续跑后面的用户程序。

6.3. Sleep Mode 及唤醒

通过配置系统寄存器 LP_CON[0]=1,进入最低功耗的 Sleep Mode。在 Sleep 模式下系统时钟被关闭,CPU 及大部分系统时钟域的外设停止工作,除了 PMU 以外的模拟模块都可以关闭,关闭所有时钟源包括 HRCOSC、LRCOSC、XOSC。通过选择多种唤醒源来唤醒 Stop Mode,唤醒源包括: 所有 GPIO 电平变化触发唤醒、比较器唤醒、WUT 定时中断唤醒、LVDVCC(电源的低电压检测信号) 中断唤醒。Sleep Mode 唤醒之后可以通过进入 Sleep 模式之前配置的 LP_CON[6]=1,会继续跑后面的用户程序,如果 LP_CON[6]=0,则会复位系统重新跑用户程序。

如果在进入低功耗 Sleep 模式之前打开看门狗复位模式,则当看门狗计时到了以后会复位整个系统重新跑用户程序。建议用户在进入低功耗 Sleep 模式之前喂狗,并根据用户应用场景设置看门狗计时长度,并打开看门狗复位工作模式,则可以保护低功耗模式下发生小概

率不可预测的外部环境造成的异常情况。

6.4. 低功耗唤醒单元结构图

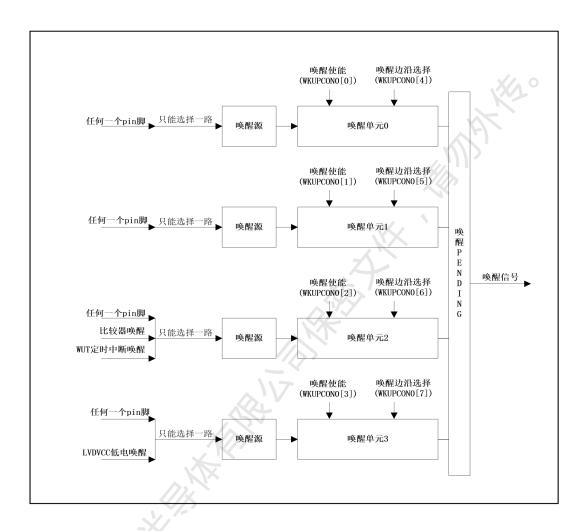


图 6-1 低功耗唤醒结构图

6.5. 寄存器详细说明

表 6-1 低功耗和唤醒功能配置寄存器列表

Address	Register Name	Description
0x0D (SFR)	WKUP_CONO	WKUP_CONO register
0x0E (SFR)	WKUP_PND	WKUP_PND register

0x3A (SFR)	LP_CON	LP_CON register
0x116 (XSFR)	SYS_CON6	SYS_CON6 register
0x117 (XSFR)	SYS_CON7	SYS_CON7 register
0x118 (XSFR)	SYS_CON8	SYS_CON8 register

6.5.1. **WKUP_CON0**

Addr = 0x0D (SFR)

Bit(s)	Name	Description	R/W	Reset
		低功耗 SLEEP 模式唤醒通道 3 触发条件设置		
7	WKUP3EDG	0x0: 高电平触发唤醒	RW	0x0
		0x1: 低电平触发唤醒		
		低功耗 SLEEP 模式唤醒通道 2 触发条件设置		
6	WKUP2EDG	0x0: 高电平触发唤醒	RW	0x0
		0x1: 低电平触发唤醒		
		低功耗 SLEEP 模式唤醒通道 1 触发条件设置		
5	WKUP1EDG	0x0: 高电平触发唤醒	RW	0x0
		0x1: 低电平触发唤醒		
	4)	低功耗 SLEEP 模式唤醒通道 0 触发条件设置		
4	WKUP0EDG	0x0: 高电平触发唤醒	RW	0x0
	1/-	0x1: 低电平触发唤醒		
	XX	低功耗 SLEEP 模式唤醒通道 3 功能使能位		
3	WKUP3EN	0x0: 关闭	RW	0x0
		0x1: 打开		
\ \frac{\}{1}	\$1	低功耗 SLEEP 模式唤醒通道 2 功能使能位		
2	WKUP2EN	0x0: 关闭	RW	0x0
		0x1: 打开		
		低功耗 SLEEP 模式唤醒通道 1 功能使能位		
1	WKUP1EN	0x0: 关闭	RW	0x0
		0x1: 打开		

		低功耗 SLEEP 模式唤醒通道 0 功能使能位		
0	WKUPOEN	0x0: 关闭	RW	0x0
		0x1: 打开		

6.5.2. **WKUP_PND**

Addr = 0x0E (SFR)

Bit(s)	Name	Description	R/W	Reset
		低功耗 SLEEP 模式唤醒通道 3 清 pending 位		
7	WKUP3PCLR	0x0: 无操作	RW	0x0
		0x1: 清 pending		
		低功耗 SLEEP 模式唤醒通道 2 清 pending 位		
6	WKUP2PCLR	0x0: 无操作	RW	0x0
		0x1: 清 pending		
		低功耗 SLEEP 模式唤醒通道 1 清 pending 位		
5	WKUP1PCLR	0x0: 无操作	RW	0x0
		0x1: 清 pending		
		低功耗 SLEEP 模式唤醒通道 0 清 pending 位		
4	WKUP0PCLR	0x0: 无操作	RW	0x0
		0x1: 清 pending		
	//	低功耗 SLEEP 模式唤醒通道 3 唤醒 pending 位		
3	WKUP3PND	0x0: 无 pending	RW	0x0
	×.7×	0x1: 有 pending		
	112	低功耗 SLEEP 模式唤醒通道 2 唤醒 pending 位		
2	WKUP2PND	0x0: 无 pending	RW	0x0
	-1553	0x1: 有 pending		
3	SK.	低功耗 SLEEP 模式唤醒通道 1 唤醒 pending 位		
1	WKUP1PND	0x0: 无 pending	RW	0x0
		0x1: 有 pending		
		低功耗 SLEEP 模式唤醒通道 0 唤醒 pending 位		
0	WKUPOPND	0x0: 无 pending	RW	0x0
		0x1: 有 pending		

6.5.3. **LP_CON**

Addr = 0x3A (SFR)

Bit(s)	Name	Description	R/W	Reset
7	IDLE	Idle 低功耗模式使能 0x0: 打开,进入 Idle 低功耗模式,停 CPU 时钟 0x1: 关闭	RW	0x1
6	SLEEPGOEN	Sleep 低功耗模式唤醒后继续跑后续程序使能位 0x0: Sleep 模式唤醒后复位重新跑程序 0x1: Sleep 模式唤醒后继续跑后续程序	RW	0x1
5	CPDIS	用户程序保护功能关闭位 0x0: 打开 (默认状态) 0x1: 关闭 Note: CPU 和 ISD 都无法写寄存器!	RO	0x0
4	LPGLIRCEN	低功耗进入低速 RC 选择 低功耗 Sleep 模式下,可以通过配置该寄存器为 1,在系统进入 Sleep 模式后自动 gate 住 RC64K 低速时钟,目的是减少 Sleep 的漏电功耗。也可		0x0
3	ISDDISLPEN	ISD 模式下低功耗功能关闭位 0x0: 使能 0x1: 关闭 Note: 该寄存器配置为 0x1 时, ISD 调试模式下进不了 SLEEP 低功耗模式!	RW	0x1
2	ТМНСРИ	测试模式下 hold 住 CPU 使能 Note: 用户程序不要随便写这个寄存器,会造成系统功能异常的风险!!!	RW	0x0

		0x1: hold CPU		
		Stop 低功耗模式使能		
1	STOP	0x0: 关闭	RW	0x0
		0x1: 打开, 进入 Stop 低功耗模式		
		Sleep 低功耗模式使能		
0	SLEEP	0x0: 关闭	RW	0x0
		0x1: 打开,进入 Sleep 低功耗模式		

7. 系统控制模块

7.1. 功能概述

系统控制模块主要是用来管理和配置系统功能的,包括系统中模拟模块,时钟源,供电 系统,时钟管理系统,低功耗及唤醒系统等系统功能配置。

7.2. 寄存器列表

表 7-1 系统寄存器列表

Address	Register Name	Description
0x110 (XSFR)	SYS_CONO	SYS_CONO register
0x111 (XSFR)	SYS_CON1	SYS_CON1 register
0x112 (XSFR)	SYS_CON2	SYS_CON2 register
0x113 (XSFR)	SYS_CON3	SYS_CON3 register
0x114 (XSFR)	SYS_CON4	SYS_CON4 register
0x115 (XSFR)	SYS_CON5	SYS_CON5 register
0x116 (XSFR)	SYS_CON6	SYS_CON6 register
0x117 (XSFR)	SYS_CON7	SYS_CON7 register
0x118 (XSFR)	SYS_CON8	SYS_CON8 register
0x0F (SFR)	SYS_PND	SYS_PND register

	1	I
0x15E (XSFR)	IO_MAP	IO_MAP register
0x162 (XSFR)	CLK_XOSC	XOSC Control register (晶振配置寄存器)
0x120 (XSFR)	CLK_ACONO	CLK_ACONO register
0x121 (XSFR)	CLK_ACON1	CLK_ACON1 register
0x122 (XSFR)	ADC_ACONO	ADC_ACONO register (ADC 模拟相关配置)
0x123 (XSFR)	ADC_ACON1	ADC ACON1 register (ADC 模拟相关配置)
0x124 (XSFR)	ADC ACON2	ADC_ACON2 register (ADC 模拟相关配置)
0x130 (XSFR)	CLK CONO	CLK CONO register
0x131 (XSFR)	CLK CON1	CLK_CON1 register
0x132 (XSFR)	CLK CON2	CLK CON2 register
0x133 (XSFR)	CLK_CON3	CLK CON3 register
0x134 (XSFR)		SK-
	CLK_CON4	CLK_CON4 register
0x135 (XSFR)	CLK_CON5	CLK_CON5 register
0x136 (XSFR)	CLK_CON6	CLK_CON6 register
0x137 (XSFR)	CLK_CON7	CLK_CON7 register (ADC 模拟相关配置)
0x138 (XSFR)	CLK_CON8	CLK_CON8 register

7.3. 寄存器详细说明

7.3.1. **SYS_CON0**

Addr = 0x110 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		高级 Timer0 软复位		
7	STMROSOFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		

		基本 Timer2 软复位		
6	TMR2SOFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		基本 Timer1 软复位		
5	TMR1SOFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		基本 Timer0 软复位	// 0	
4	TMROSOFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		I2C 软复位		
3	I2CS0FTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		SPI0 软复位		
2	SPI0S0FTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		UART1 软复位		
1	UART1S0FTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		UARTO 软复位		
0	UARTOSOFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		

7.3.2. **SYS_CON1**

Addr = 0x111 (XSFR)

Bit(s)	Name	Description	R/W	Reset
3		GPIO Debounce 模块软复位		
7	IODBSSFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
6	_	_	RW	0x1
_	CDIOCOPTROT	GPIO 模块软复位	DW	0.1
5	GPIOSOFTRST	0x0: 软复位	RW	0x1

		0x1: 软复位释放		
		ADC 软复位		
4	ADCS0FTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		Watchdog 软复位		
3	WDTSOFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		CRC 软复位	KIT	
2	CRCS0FTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		高级 Timer2 软复位		
1	STMR2SOFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		
		高级 Timer1 软复位		
0	STMR1SOFTRST	0x0: 软复位	RW	0x1
		0x1: 软复位释放		

		0x1: 软复位释放					
7.3.3	7.3.3. SYS_CON2						
	= 0x112 (XSFR)						
Bit(s)	Name	Description	R/W	Reset			
	-\//-	Timer4 捕获 rc64k_div8 使能位					
7	TMR4CAPRCEN	0x0: 关闭	RW	0x0			
		0x1: 打开					
	177	XOSC 硬件使能功能选择位					
6	XOSCHWENSEL	0x0: 关闭	RW	0x0			
4	沃	0x1: 打开					
	*	基本Timer2与Timer4联合完成红外发送功能使					
		能位					
5	TMR24IREN	0x0: 关闭	RW	0x0			
		0x1: 打开					
		Note: 基本 Timer2 作为载波 PWM, Timer4 通道					

		A 作为调制波 PWM		
		LVDVCC 唤醒使能位		
4	LVDVCCWKEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		ISP IO 输入滤波功能使能位		
3	ISPIODEBEN	0x0: 关闭	RW	0x0
		0x1: 打开		
2	_	_	X4.	-
1	_	- (4)	_	_
0	_	- 1	RW	0x1

Note: SYS_CON2 寄存器中保留位用于特殊测试功能,用户程序不能随意写操作,可能会带来系统风险!

7.3.4. **SYS_CON3**

Addr = 0x113 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P07 输入滤波功能使能位		
7	PO7DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		P06 输入滤波功能使能位		
6	P06DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
	1/2	P05 输入滤波功能使能位		
5	P05DBSEN	0x0: 关闭	RW	0x0
4	-153	0x1: 打开		
4		P04 输入滤波功能使能位		
4	PO4DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		P03 输入滤波功能使能位		
3	P03DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		

2	PO2DBSEN	P02 输入滤波功能使能位 0x0: 关闭 0x1: 打开	RW	0x0
1	PO1DBSEN	P01 输入滤波功能使能位 0x0: 关闭 0x1: 打开	RW	0x0
0	POODBSEN	P00 输入滤波功能使能位 0x0: 关闭 0x1: 打开	RW	0x0

7.3.5. **SYS_CON4**

Addr = 0x114 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P17 输入滤波功能使能位		
7	P17DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		P16 输入滤波功能使能位		
6	P16DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		P15 输入滤波功能使能位		
5	P15DBSEN	0x0: 关闭	RW	0x0
	KIS	0x1: 打开		
	-1(5-%)	P14 输入滤波功能使能位		
4	P14DBSEN	0x0: 关闭	RW	0x0
×	YI.	0x1: 打开		
		P13 输入滤波功能使能位		
3	P13DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		P12 输入滤波功能使能位		
2	P12DBSEN	0x0: 关闭	RW	0x0

		0x1: 打开		
		P11 输入滤波功能使能位		
1	P11DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		P10 输入滤波功能使能位		
0	P10DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		

7.3.6. **SYS_CON5**

Addr = 0x115 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 输入滤波功能使能位		
7	P27DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		P26 输入滤波功能使能位		
6	P26DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
	. <	P25 输入滤波功能使能位		
5	P25DBSEN	0x0: 关闭	RW	0x0
	7.5	0x1: 打开		
	1/5	P24 输入滤波功能使能位		
4	P24DBSEN	0x0: 关闭	RW	0x0
	K-IV	0x1: 打开		
	71	P23 输入滤波功能使能位		
3	P23DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		P22 输入滤波功能使能位		
2	P22DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		

1	P21DBSEN	P21 输入滤波功能使能位 0x0: 关闭 0x1: 打开	RW	0x0
0	P20DBSEN	P20 输入滤波功能使能位 0x0: 关闭 0x1: 打开	RW	0x0

7.3.7. **SYS_CON6**

Addr = 0x116 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		片上 SRAM 动态电压调整值		
7 : 4	MEMDVS[3: 0]	Note: 用户千万不要配置该寄存器,否则会导致	-	-
		芯片不确定行为!!!!		
		低功耗 Sleep Mode 流程进入关闭程序存储器供电		
		的延迟时间配置		
		0x0: 1 个系统周期		0x3
	, manual m	0x1:2 个系统周期	n	0.0
3 : 2	MPDNCNT	0x2:3 个系统周期	RW	0x3
		0x3: 4 个系统周期(推荐配置)		
		Note: 低功耗模式进入之前必须将系统时钟切换		
		成低速的 64KHz 的 RC,所以延迟时间=n*T64k。		
	17) -(EX	P31 输入滤波功能使能位		
1	P31DBSEN	0x0: 关闭	RW	0x0
	^A I.	0x1: 打开		
0		P30 输入滤波功能使能位		
	P30DBSEN	0x0: 关闭	RW	0x0
		0x1: 打开		

7.3.8. **SYS_CON7**

Addr = 0x117 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		低功耗 Sleep Mode 流程退出低功耗 LDO 延迟的时		
		间配置		
		0x0: 1 个系统周期	XLC)
7	EVECI DONE	0x1: 2 个系统周期	DW	0.0
7: 6	EXTSLPCNT	0x2: 3 个系统周期	RW	0x0
		0x3: 4 个系统周期(推荐配置)		
		Note: 低功耗模式进入之前必须将系统时钟切换		
		成低速的 64KHz 的 RC, 所以延迟时间=n*T64k。		
		低功耗 Sleep Mode 流程退出低功耗流程中打开程		
		序存储器供电的延迟时间配置		
	FLASHUPCNT	0x0: 1 个系统周期		
_ ,		0x1: 2 个系统周期	RW	0.0
5: 4		0x2: 3 个系统周期		0x0
		0x3: 4 个系统周期(推荐配置)		
		Note: 低功耗模式进入之前必须将系统时钟切换		
		成低速的 64KHz 的 RC,所以延迟时间=n*T64k。		
		低功耗 Sleep Mode 流程打开主 LDO 延迟时间配置		
		0x0: 1 个系统周期		
	N/	0x1: 2 个系统周期		
3: 2	OPMLDOCNT	0x2: 3 个系统周期	RW	0x0
		0x3: 4 个系统周期(推荐配置)		
	17.75	Note: 低功耗模式进入之前必须将系统时钟切换		
	-15-3	成低速的 64KHz 的 RC,所以延迟时间=n*T64k。		
3	X	低功耗 Sleep Mode 流程关闭主 LDO 延迟时间配置		
	4	0x0: 1 个系统周期		
1 0	CI CMI DOCNT	0x1: 2 个系统周期	Dm	0.0
1: 0	CLSMLDOCNT	0x2: 3 个系统周期	RW	0x0
		0x3: 4 个系统周期(推荐配置)		
		Note: 低功耗模式进入之前必须将系统时钟切换		

7.3.9. **SYS_CON8**

Addr = 0x118 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	LPSLPDISANA	低功耗 sleep mode 一键关模拟模块功能使能位 0x0: 关闭 0x1: 打开 Note: 通过一键关闭模拟模块,可以节省进入低 功耗 sleep 模式前的程序代码,简化关闭模拟模块的流程。一键关闭模拟模块包括: 包括触摸按键,运放,比较器,ADC。	RW	0x0
6	MEMDVSE	片上 SRAM 动态电压调整使能位 Note: 用户千万不要配置该寄存器,否则会导致 芯片不确定行为!!!!	RW	0x0
5	FASTRSTEN	快速复位唤醒 Sleep Mode 使能 0x0: 关闭 0x1: 打开 Note: 配置此功能主要是为了能在 sleep 低功耗 模式下,设置通过复位唤醒 sleep 时,可以节省复位时间	RW	0x0
4	SPIOMAP2EN	SPI0 io map2 的使能位 0x0: 关闭 0x1: 打开	RW	0x0
3	SPIOMAP1EN	SPIO io map1 的使能位 0x0: 关闭 0x1: 打开	RW	0x0
2	DBGEN	DEBUG 功能使能位 0x0: 关闭 0x1: 打开	RW	0x0

1: 0	PMUREV54	PMU 保留寄存器的位 5: 4 的值	RW	0x0
------	----------	---------------------	----	-----

7.3.10. **SYS_PND**

Addr = 0x0F (SFR)

Bit(s)	Name	Description	R/W	Reset
7	_	_	X	-
6	SFTRST1CLR	写1清掉系统软复位1标志位	RW	0x0
5	SLPSTACLR	写 1 清掉系统 sleep 标志位	RW	0x0
4	SFTRSTCLR	写 1 清掉系统软复位标志位	RW	0x0
3	_	- ""	-	-
2	SFTRST1PND	系统软复位 1 标志位 写 1 系统软复位。	RW	0x0
1	SLPPND	系统 sleep 标志位	RW	0x0
0	SFTRSTPND	系统软复位标志位 写1系统软复位。	RW	0x0

7.3.11. **IO_MAP**

Addr = 0x15E (XSFR)

Bit(s)	Name	Description	R/W	Reset
	, -)X	高级 timer 比较点 C 相等触发 timer0 功能使		
7	STMRCMPCEQEN	能 0x0: 关闭	RW	0x0
	185	0x1: 使能		
6	-12%	_	RW	0x0
3	*	MCLR MAP3 选择位		
5	MCLRMAP3EN	0x0: 不选择 P15	RW	0x0
		0x1: 选择 P15		
		MCLR MAP2 选择位		
4	MCLRMAP2EN	0x0: 不选择 P25	RW	0x0
		0x1: 选择 P25		

		MCLR MAP1 选择位		
3	MCLRMAP1EN	 0x0: 不选择 P23	RW	0x0
		0x1:选择 P23		
		LED DMA 使能位		
		0x0: 关闭		
		0x1: 使能		
	LEDDMACM	Note: 该位寄存器配置前需要打开保护 KEY,	DW	0.0
2	LEDDMAEN	否则配置不了。寄存器 WDT_KEY = 0x55,则关	RW	0x0
		闭寄存器写保护功能,配置完这位寄存器后,		
		需寄存器 WDT_KEY = 0x00,则打开寄存器写保		
		护功能!		
	MCLREN	MCLR 功能使能位		
		0x0: 关闭	RW	0x0
		0x1: 使能		
1		Note: 该位寄存器配置前需要打开保护 KEY,		
1		否则配置不了。寄存器 WDT_KEY = 0x55,则关		
		闭寄存器写保护功能,配置完这位寄存器后,		
		需寄存器 WDT_KEY = 0x00,则打开寄存器写保		
		护功能!		
		烧写/调试 pin 脚选择位		
		0x0: 不选择		
	No.	0x1:选择 P31【ISP_CLK】,P17【ISP_DAT】		
	TCDMAD1	Note: 该位寄存器配置前需要打开保护 KEY,	DW	01
0	ISPMAP1	否则配置不了。寄存器 WDT_KEY = 0x55,则关	RW	0x1
	7-5	闭寄存器写保护功能,配置完这位寄存器后,		
	X/5	需寄存器 WDT_KEY = 0x00,则打开寄存器写保		
	XXX	护功能!		

7.3.12. **CLK_XOSC**

Addr = 0x162 (XSFR)

I	Bit(s)	Name	Description	R/W	Reset
	7	HXOSCEN	高速晶振使能	RW	0x0

		00万体外		
		0x0: 不使能		
		0x1: 使能		
		高速晶振驱动能力选择		
		0x0: x2		
		0x1: x3		
		0x2: x4		
6 : 4	HXOSCDR	0x3: x5	RW	0x3
		0x4: x6	KXT.	
		0x5: x7		
		0x6: x8		
		0x7: x9		
		32. 768KHz 低速晶振使能		
3	LXOSCEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		32.768KHz 低速晶振驱动能力选择		
		0x0: X1		
		0x1: X2		
		0x2: X3		
2: 0	LXOSCDR	0x3: X4	RW	0x3
		0x4: X5		
		0x5: X6		
		0x6: X7		
		0x7: X8		

7.3.13. CLK_ACON0

Addr = 0x120 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	7-	HRC 时钟使能信号		
7	HRCEN	0x0: 关闭	RW	0x0
		0x1: 打开		
6 : 0	IIDCCC	 HRC 时钟频率细调(step=0.5%)	DW	0 10
	HRCSC	0x00: low	RW	0x48

	0x7F: high	

7.3.14. **CLK_ACON1**

Addr = 0x121 (XSFR)

Auui	= 0x121 (XSFR)		x/, o	
Bit(s)	Name	Description	R/W	Reset
		输出时钟迟滞窗口选择		
7	XOSCHY	0x0: 没有迟滞	RW	0x1
		0x1: 有+/-10%的迟滞		
		HRC 内部模拟电压测试使能信号		
6	HRCTESTEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		HRC 时钟频率温度系数调节		
		0x0: -1.17%(100°C)		
5 : 4	HRCTEMPSEL	0x1: −0.82% (65°C)	RW	0x1
		0x2: -0.47% (40°C)		
		0x3: +0.67% (20℃)		
		HRC 时钟频率细调(step=0.3%)		
0 0	IIDCCCADD	0x0: 1ow	DW	0 1
3 : 2	HRCSCADD	N _x	RW	0x1
		0x3: high		
	*2	HRC 时钟频率粗调		
	X 5	0x0: 24MHz		
1: 0	HRCSR	0x1: 48MHz	RW	0x1
	-14-3	0x2: 48MHz		
4	汝 '	0x3: 72MHz		

7.3.15. **ADC_ACON0**

Addr = 0x122 (XSFR)

Bit(s) Name Description	R/W	Reset
-------------------------	-----	-------

7	_	-	_	_
		ADC 内部检测信号选择		
		0x0: 保留,未定义		
		0x1: VREF_0P6		
		0x2: 保留,未定义		
6 : 4	ADCDETCHSEL	0x3: VCCA_D5	RW	0x7
		0x4: AMPO (运放 0 的输出)	./. 0	
		0x5: AMP1 (运放1的输出)	KYT.	
		0x6: AMP2 (运放 2 的输出)		
		0x7: 不使能内部检测信号		
		ADC 偏置电流选择位		
		0x0: 1.25X		
3	ADCBIASSEL	0x1: 1X	RW	0x0
		Note: ADC 测试用信号,用户不用关注此配置,		
		使用时用默认值即可!		
		ADC 输入基准参考电压选择位		
2	ADCINREFSEL	0x0: 0.6V	RW	0x1
		0x1: 1.05V;		
		ADC 偏置电流使能信号		
		0x0: 关闭		
1	ADCBIASEN	0x1: 打开	RW	0x0
		Note: ADC 模拟电路要正常工作,必须使能内部		
		偏置电流模块,即必须配置该寄存器为1!		
		ADC 中 CMP 使能信号		
	7.5	0x0: 关闭		
0	ADCCMPEN	0x1: 打开	RW	0x0
	-16/2	Note: ADC 模拟电路要正常工作,必须使能内部		
	X-1V	比较器,即必须配置该寄存器为1!		

7.3.16. **ADC_ACON1**

Addr = 0x123 (XSFR)

Bit(s) Name	Description	R/W	Reset
-------------	-------------	-----	-------

		ADC 校准电流选择		
		0x0: 1X		
7	ADCTRIMIBSEL	0x1: 2X	RW	0x0
		Note: 芯片出厂时已经经过校准,校准值用户程		
		序需要在对应NVR存储器中固定位置读取出来配		
		置到该寄存器!		
		ADC 中内部参考选择信号	11.0	
6	ADCSELINREF	0x0: 关闭内部参考	RW	0x1
	ADCSELINKET	0x1: 选择内部参考	IVW	UXI
		Note: 选择内部参考时,必须先断开外部参考!		
		ADC 外部参考选择信号		
_	ADOCEL EVEE	0x0: 关闭外部参考	DW	0.0
5	ADCSELEXREF	0x1:选择外部 EXREF (PO7) 为参考电压	RW	0x0
		Note: 选择外部参考时,必须选关闭内部参考!		
		ADC 测试信号选择		
	ADCTENSEL	0x0: 测试信号		
		0x1: 保留		
4: 3		0x2: 保留	RW	0x3
		0x3: 关闭测试信号		
		Note: 用户在使用 ADC 时,需要确保关闭所有测		
		试信号,即保持默认值 0x3 不改变!		
		ADC 中内部参考电压选择信号		
		0x0: 保留, 未定义		
	-X/	0x1: 2.0V (未校准)		
	7-5	0x2: 2.4V		
	Alta	0x3: 3.0V (未校准)		
	1-75	0x4: 3.6V (未校准)		
2: 0	ADCVREFSEL	0x5: 4.2V(未校准)	RW	0x1
	\$T	0x6: VCCA		
		0x7: 保留, 未定义		
		Note:		
		 当使用 VCCA 作为参考时,需要进行以下配置:		
		ADCSELINREF=0		
		ADCSELEXREF=0;		
	l .		ı	

	当使用其他内部参考时,需要进行以下配置:	
	ADCSELINREF=1	
	ADCSELEXREF=0;	

7.3.17. **ADC_ACON2**

Addr = 0x124 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	_	-	RW	0x0
		ADC 比较器校准功能使能信号		
		0x0: 关闭		
		0x1: 打开		
6	ADCCMPTRIMEN	Note: 芯片 ADC 校准值生效使能,用户程序从	RW	0x0
		对应 NVR 存储器固定位置读取 ADC 校准值,并		
		配置到对应的寄存器以后,必须打开这个使能		
		信号,才能生效!		
		ADC 比较器校准值配置位		
		MSB: 符号位,低5为数值。		
5: 0	ADCCMPTRIM	Note: 芯片出厂时已经经过校准,校准值用户	RW	0x0
		程序需要在对应 NVR 存储器中固定位置读取出		
	/>	来配置到该寄存器!		

7.3.18. **CLK_CON0**

Addr = 0x130 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	<u> </u>		ı	_
		比较器滤波时钟选择位		
6	CMPDBSSEL	0x0: 选择 eflash_clk	RW	0x0
		0x1: 选择 sys_clk		
5: 4	PODBSCLKSEL	PO 滤波时钟选择位	RW	0x0
0: 4	PODDSCLKSEL	0x0:选择 hirc_div_clk	ΚW	UXU

		0x1: 选择 xoscm		
		0x2: 选择 sys_clk		
		0x3: 选择 rc64k		
		IO 输出时钟源选择位		
		0x0:选择 sys_clk		
3 : 2	CLKTOIOSEL	0x1:选择 hirc_div_clk	RW	0x0
		0x2: 选择 lirc		
		0x3: 选择 xoscm	X,T.o	
		系统时钟选择位		
		0x0: 选择 rc64k		
1: 0	SYSCLKSEL	0x1: 选择 xoscm	RW	0x0
		0x2: 选择 hirc_div_clk		
		0x3:选择 hirc_clk		

7.3.19. **CLK_CON1**

Addr = 0x131 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	P1DBSCLKSEL	P1 滤波时钟选择位 0x0: 选择 hirc_div_clk 0x1: 选择 xoscm 0x2: 选择 sys_clk 0x3: 选择 rc64k	RW	0x0
5: 3	HIRCCLKDIV	高速 HRCOSC 时钟源分频设置 0x0: 不分频 0x1: 2分频 0x2: 3分频 0x6: 7分频 0x7: 关闭 Note: 配置比为 n+1 时钟。	RW	0x6
2: 0	CLKTOIODIV	10 输出时钟源分频设置	RW	0x0

	0x0: 不分频	
	0x1: 2分頻	
	0x2: 3分频	
	0x6: 7分频	
	0x7: 关闭	
	Note: 配置比为 n+1 时钟。	

7.3.20. CLK_CON2

Addr = 0x132 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	-	-	_	-
6	-	- 25>	RW	0x1
5	ADCCLKSEL	Adc clk 时钟选择位 0x0: 选择 adc_clk_pre 0x1: 选择 adc_clk_pre_inv	RW	0x0
4	LEDCLKEN	LED clk 时钟使能位 0x0: 关闭时钟 0x1: 打开时钟	RW	0x0
3: 0	SYSCLKDIV	系统时钟分频设置 0x0: 不分频 0x1: 2分频 0x2: 3分频 0xE: 15分频 0xF: 关闭 Note: 配置比为 n+1 时钟。	RW	0x0

7.3.21. CLK_CON3

Addr = 0x133 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		基本 Timer2 模块时钟使能位		
7	TMR2CLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		基本 Timer1 模块时钟使能位		
6	TMR1CLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟	X/AC)
		基本 Timer0 模块时钟使能位		
5	TMROCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		CRC 模块时钟使能位		
4	CRCCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		I2C 模块时钟使能位		
3	I2CCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		SPI0 模块时钟使能位		
2	SPIOCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		UART1 模块时钟使能位		
1	UART1CLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
	3//	UARTO 模块时钟使能位		
0	UARTOCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		

7.3.22. **CLK_CON4**

Addr = 0x134 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	TECTOL VEN	测试时钟使能位	DW	00
'	TESTCLKEN	0x0: 关闭时钟	RW	0x0

		0x1: 打开时钟		
		SPI 数据线输入同步使能		
6	SPIDISYNEN	0x0:数据线输入不经过同步器	RW	0x1
		0x1: 数据线输入经过同步器		
		片上 SRAM 时钟使能位		
5	RAMCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		AHB1 CLK 时钟使能位	Ky7.	
4	AHB1CLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟	1	
		ADC 模块时钟使能位		
3	ADCCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		高级 Timer2 模块时钟使能位		
2	STMR2CLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		高级 Timer1 模块时钟使能位		
1	STMR1CLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
		高级 Timer 0 模块时钟使能位		
0	STMROCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		

7.3.23. CLK_CON5

Addr = 0x135 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		hirc_clk 时钟使能位		
7	HIRCCLKEN	0x0: 关闭时钟	RW	0x1
		0x1: 打开时钟		
6	_	-	RW	0x1
5: 4	WUTCLKSEL	WUT 模块时钟选择位	RW	0x0

		0x0:选择 sys_clk		
		0x1: 选择 xoscm		
		0x2: 选择 hirc_div_clk		
		0x3: 选择 rc64k		
		LVD 模块滤波时钟源选择位		
		0x0:选择 sys_clk		
3: 2	LVDDBSCLKSEL	0x1:选择 hirc_div_clk	RW	0x0
		0x2: 选择 xoscm	XX7°)
		0x3: 选择 rc64k		
1	_	-	_	_
		测试时钟 1 使能位		
0	TCLKEN	0x0: 关闭时钟	RW	0x0
		0x1: 打开时钟		

7.3.24. **CLK_CON6**

Addr = 0x136 (XSFR)

Bit(s)	Name	Hirc clk 时钟分频选择 0x0: 不分频 IRCDIVSEL 0x1: 2 分频 0x2: 4 分频 0x3: 8 分频		Reset
		Hirc clk 时钟分频选择		
		0x0: 不分频		
7 : 6	HIRCDIVSEL	0x1: 2分频	RW	0x0
	3//	0x2: 4 分频		
	\X	0x3: 8分频		
	///5	存储器烧写时钟分频设置		
	0x00: 不	0x00: 不分频	RW OxO	
	-1(5)	0x01: 2 分频		
- O	MCLKDIV	0x02: 3 分频		
5: 0	MCLKDIV		KW	UXU
		0x3E: 63 分频		
		0x3F: 关闭		
		Note: 配置比为 n+1 时钟。		

7.3.25. **CLK_CON7**

Addr = 0x137 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		ADC_TRIMCKSEL_VDD 配置		
7	ADCTDMCL VCCI	0x0: Normal	DW	0.0
,	ADCTRMCLKSEL	0x1: Digital/软件校准时选 CK_VDD 直接作为	RW	0x0
		时钟		
6 : 0	_	-		_

7.3.26. CLK_CON8

Addr = 0x138 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	ADC 软件 trim 功能使能位 Ox0: 选择关闭 Ox1: 选择打开		RW	0x0
6	ADC_SFTRM_SOC	ADC 软件 trim SOC 控制位	RW	0x0
5	ADC_SFTRM_TRM	DC 软件 trim triming 值控制位 R		0x0
4	ADC_SFTRM_CLK	ADC 软件 trim 时钟控制位	RW	0x0
3: 2	P3DBSCLKSEL	P3 滤波时钟选择位 0x0: 选择 hirc_div_clk 0x1: 选择 xoscm 0x2: 选择 sys_clk 0x3: 选择 rc64k	RW	0x0
1: 0	P2DBSCLKSEL	P2 滤波时钟选择位 0x0: 选择 hirc_div_clk 0x1: 选择 xoscm 0x2: 选择 sys_clk 0x3: 选择 rc64k	RW	0x0

8. 中断系统

8.1. 中断概述

TX8C126x 支持多达 29 个中断源。每个中断源都有独立的中断使能信号,可以通过软件来控制其使能开关。通过设置 DPCFG[7: 6] 可调节中断起始地址。首个中断地址为: 起始地址+(中断向量号+1)*3。

中断控制器有以下特性:

- ▶从29个中断源接收中断
- ▶ 支持2级嵌套,等级越高优先级越高
- ▶中断向量号起始地址可选

8.2. 中断向量表

表 8-1 中断向量表

Ī	Name	Physical Base Address	Base Address
	INT_BASE	000CH/080CH/100CH/600CH	中断向量起始地址,可配置

Address	Register Name	Description
000FH	LVD	LVD Interrupt
0012Н	GPI00	GPIOO Interrupt
0015Н	GPI01	GPIO1 Interrupt
0018Н	GPI02	GPIO2 Interrupt
001BH	GPI03	GPIO3 Interrupt
001ЕН	TMRO	TimerO Interrupt
0021Н	TMR1	Timerl Interrupt
0024Н	TMR2	Timer2 Interrupt
0027Н	TMR3	Timer3 Interrupt

002AH	TMR4	Timer4 Interrupt
002DH	STMRO	Super TimerO Interrupt
0030Н	STMR1	Super Timerl Interrupt
0033Н	STMR2	Super Timer2 Interrupt
0036Н	STMR3	Super Timer3 Interrupt
0039Н	STMR4	Super Timer4 Interrupt
003СН	STMR5	Super Timer5 Interrupt
003FH	WUT	Wake Up Timer Interrupt
0042Н	ADC	ADC Interrupt
0045Н	COMP	Comparer Interrupt
0048Н	I2C	I2C Interrupt
004ВН	UARTO	UARTO Interrupt
004ЕН	UART1	UART1 Interrupt
0051Н	SPI	SPI Interrupt
0054Н	WKPND	Low Power Wake Up Interrupt
0057Н	WDT	WatchDog Interrupt
005AH	BUZ/FLASH	BUZ/FLASH Interrupt
005DH		_
0060Н	AMP	AMP Interrupt
0063Н	LED	LED Interrupt

注:此向量表以 0000H 为起始基地址;如选择不同的起始地址,请根据计算方式加上相应的偏移量。

8.3. 寄存器列表

Address	Register Name	Description
OxA8 (SFR)	IEO	Interrupt Enable O Register
OxA9 (SFR)	IE1	Interrupt Enable 1 Register
OxAA (SFR)	IE2	Interrupt Enable 2 Register
OxAB (SFR)	IE3	Interrupt Enable 3 Register
0xB8 (SFR)	IPO	Interrupt Priority O Register
0xB1 (SFR)	IP1	Interrupt Priority 1 Register
0xB2 (SFR)	IP2	Interrupt Priority 2 Register
0xB3 (SFR)	IP3	Interrupt Priority 3 Register
0xB4 (SFR)	IP4	Interrupt Priority 4 Register
0xB5 (SFR)	IP5	Interrupt Priority 5 Register
0xB6 (SFR)	IP6	Interrupt Priority 6 Register
0xB7 (SFR)	IP7	Interrupt Priority 7 Register

8.4. 寄存器详细说明

8.4.1. **IE0**

Addr = 0xA8 (SFR)

Bit(s)	Name	Description	R/W	Reset
		全局中断使能		
7	EA	0x0:禁止所有中断	RW	0x0
		0x1: 允许所有中断		
C	TMD 1	TMR1 中断使能	DW	0 0
6	TMR1	0x0: 禁止 TMR1 中断	RW	0x0

		0x1: 允许 TMR1 中断		
		TMRO 中断使能		
5	TMRO	0x0:禁止TMRO中断	RW	0x0
		0x1: 允许 TMRO 中断		
		GPI03 中断使能		
4	GP103	0x0:禁止 GPI03 中断	RW	0x0
		0x1: 允许 GPI03 中断		
		GPI02 中断使能	1307	
3	GP102	0x0:禁止 GPI02 中断	RW	0x0
		0x1: 允许 GPI02 中断		
		GPI01 中断使能		
2	GPI01	0x0: 禁止 GPI01 中断	RW	0x0
		0x1: 允许 GPI01 中断		
		GPI00 中断使能		
1	GPI00	0x0:禁止 GPI00 中断	RW	0x0
		0x1: 允许 GPI00 中断		
		LVD 中断使能		
0	LVD	0x0: 禁止 LVD 中断	RW	0x0
		0x1: 允许 LVD 中断		

		DXI: 允许LVD 中断		
8.4.2. IE1 $Addr = 0xA9 (SFR)$				
Bit(s)	Name	Description	R/W	Reset
	1/1/2	STMR4 中断使能		
7	STMR4	0x0:禁止 STMR4 中断	RW	0x0
××		0x1:允许STMR4中断		
3/1		STMR3 中断使能		
6	STMR3	0x0:禁止 STMR3 中断	RW	0x0
		0x1:允许 STMR3 中断		
		STMR2 中断使能		
5	STMR2	0x0: 禁止 STMR2 中断	RW	0x0
		0x1:允许STMR2中断		

		STMR1 中断使能		
4	STMR1	0x0: 禁止 STMR1 中断	RW	0x0
		0x1: 允许 STMR1 中断		
		STMRO 中断使能		
3	STMRO	0x0: 禁止 STMRO 中断	RW	0x0
		0x1:允许 STMRO 中断		
		TMR4 中断使能	.//	
2	TMR4	0x0: 禁止 TMR4 中断	RW	0x0
		0x1: 允许 TMR4 中断		
		TMR3 中断使能		
1	TMR3	0x0: 禁止 TMR3 中断	RW	0x0
		0x1: 允许 TMR3 中断		
		TMR2 中断使能		
0	TMR2	0x0: 禁止 TMR2 中断	RW	0x0
		0x1: 允许 TMR2 中断		

8.4.3. **IE2**

Addr = OxAA (SFR)

Bit(s)	Name	Description	R/W	Reset
	N. N.	SPI 中断使能		
7	SPI	0x0:禁止 SPI 中断	RW	0x0
		0x1: 允许 SPI 中断		
	75	UART1 中断使能		
6	UART1	0x0: 禁止 UART1 中断	RW	0x0
	28	0x1: 允许 UART1 中断		
NX.		UARTO 中断使能		
5	UARTO	0x0:禁止 UARTO 中断	RW	0x0
		0x1: 允许 UARTO 中断		
		I2C 中断使能		
4	I2C	0x0:禁止 I2C 中断	RW	0x0
		0x1: 允许 I2C 中断		
3	COMP	比较器中断使能	RW	0x0

		0x0: 禁止比较器中断		
		0x1: 允许比较器中断		
		ADC 中断使能		
2	ADC	0x0: 禁止 ADC 中断	RW	0x0
		0x1: 允许 ADC 中断		
		WUT 中断使能		
1	WUT	0x0: 禁止 WUT 中断	RW	0x0
		0x1: 允许 WUT 中断	13/2	
		STMR5 中断使能		
0	STMR5	0x0: 禁止 STMR5 中断	RW	0x0
		0x1: 允许 STMR4 中断		

8.4.4. **IE3**

Addr = OxAB (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	_		_	_
_	1.00	LED 中断使能	DW	
5	LED	0x0: 禁止 LED 中断 0x1: 允许 LED 中断	RW	0x0
	X	AMP 中断使能		
4	AMP	0x0: 禁止 AMP 中断	RW	0x0
		0x1: 允许 AMP 中断		
3	- 75	_	RW	0x0
	M/S	BUZ/FLASH 中断使能		
2	BUZ/FLASH	0x0: 禁止 BUZ/FLASH 中断	RW	0x0
~XX		0x1: 允许 BUZ/FLASH 中断		
Α,		WDT 中断使能		
1	WDT	0x0: 禁止 WDT 中断	RW	0x0
		0x1: 允许 WDT 中断		
		WKPND 中断使能		
0	WKPND	OxO: 禁止 WKPND 中断	RW	0x0
		0x1: 允许 WKPND 中断		

8.4.5. **IP0**

Addr = 0xB8 (SFR)

Bit(s)	Name	Description	R/W	Reset
		GPI02 中断优先级		
7: 6	GPI02	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为1	7	
		GPI01 中断优先级)	
5 : 4	GPI01	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		
		GPI00 中断优先级		
3 : 2	GPI00	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		
		LVD 中断优先级		
1: 0	LVD	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		

8.4.6. **IP1**

Addr = 0xB1 (SFR)

Bit(s)	Name	Description		Reset
7 : 6	- /=5	_	ı	ı
	AL	TMR1 中断优先级		
5: 4	TMR1	0x0: 优先等级为 0	RW	0x0
.34	Y	0x1: 优先等级为 1		
1		TMRO 中断优先级		
3: 2	TMRO	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		
		GPI03 中断优先级		
1: 0	GPI03	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		

8.4.7. **IP2**

Addr = 0xB2 (SFR)

Bit(s)	Name	Description	R/W	Reset
		STMRO 中断优先级		
7: 6	STMRO	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1	Z.	
		TMR4 中断优先级)	
5: 4	TMR4	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		
		TMR3 中断优先级		
3: 2	TMR3	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		
		TMR2 中断优先级		
1: 0	TMR2	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		

8.4.8. **IP3**

Addr = 0xB3 (SFR)

Bit(s)	Name	Description	R/W	Reset
	7-5	STMR4 中断优先级		
7: 6	STMR4	0x0: 优先等级为 0	RW	0x0
	(17) -2x	0x1: 优先等级为1		
XX		STMR3 中断优先级		
5: 4	STMR3	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为1		
		STMR2 中断优先级		
3: 2	STMR2	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为1		
1: 0	STMR1	STMR1 中断优先级	RW	0x0

	0x0: 优先等级为 0	
	0x1: 优先等级为 1	

8.4.9. **IP4**

Addr = 0xB4 (SFR)

Bit(s)	Name	Description	R/W	Reset
		比较器中断优先级	1	
7: 6	COMP	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为1		
		ADC 中断优先级		
5: 4	ADC	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		
		WUT 中断优先级		
3: 2	WUT	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为1		
		STMR5 中断优先级		
1: 0	STMR5	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		

8.4.10. **IP5**

Addr = 0xB5 (SFR)

Bit(s)	Name	Description	R/W	Reset
-14	237P	SPI 中断优先级		
7: 6	SPI	0x0: 优先等级为 0	RW	0x0
×,1		0x1: 优先等级为 1		
		UART1 中断优先级		
5: 4	UART1	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为 1		
3: 2	HADTO	UARTO 中断优先级		0.0
	UARTO	0x0: 优先等级为 0	RW	0x0

		0x1: 优先等级为 1		
		I2C 中断优先级		
1: 0	I2C	0x0: 优先等级为 0	RW	0x0
		0x1: 优先等级为1		

8.4.11. **IP6**

Addr = 0xB6 (SFR)

7: 6 - - RW BUZ/FLASH 0x0: 优先等级为 0 0x1: 优先等级为 1 RW 3: 2 WDT 0x0: 优先等级为 0 0x1: 优先等级为 0 0x1: 优先等级为 1 RW 1: 0 WKPND 0x0: 优先等级为 0 0x1: 优先等级为 0 0x1: 优先等级为 0 0x1: 优先等级为 0 0x1: 优先等级为 1 RW	Bit(s)	R/W Reset
5: 4 BUZ/FLASH 0x0: 优先等级为 0 RW 0x1: 优先等级为 1 WDT 中断优先级 RW 3: 2 WDT 0x0: 优先等级为 0 RW 0x1: 优先等级为 1 WKPND 中断优先级 1: 0 WKPND 0x0: 优先等级为 0 RW	7 : 6	RW OxO
3: 2 WDT 0x0: 优先等级为 0 RW 0x1: 优先等级为 1 WKPND 中断优先级 RW 1: 0 WKPND 0x0: 优先等级为 0 RW	5 : 4	RW OxO
1: 0 WKPND 0x0: 优先等级为 0 RW	3 : 2	RW OxO
	1: 0	RW OxO
8.4.12. IP7 $Addr = 0xB7 (SFR)$		

Bit(s)	Name	Description	R/W	Reset
7: 4	(17) (2)	1	-	-
W.		LED 中断优先级		
*/1.		0x0: 优先等级为 0		
3 : 2	LED	0x1: 优先等级为 1	RW	0x0
		0x2: 优先等级为 2		
		0x3: 优先等级为3		
1 0	AMD	AMP 中断优先级	DW	00
1: 0	AMP	0x0: 优先等级为 0	RW	0x0

8.5. 中断优先级及中断嵌套

芯片规定两个中断优先级,可实现两级中断嵌套。当一个中断已经响应,若有高级别中断发出请求,后者可以中断前者,实现中断嵌套。通过设置 IPO-IP7 寄存器,来进行各个中断优先级的设置。IPO[1:0]设置 LVD 中断优先级,IPO[3:2]设置 GPIOO 优先级,依次类推。其中 IP1 只有 6bits,即[5:0]有效。其他 IPO, IP2-IP7 均为 8 位。

每个中断可配置优先等级 0-1。中断优先级等级设置数越大,中断的优先级越高。同一级别没有嵌套,采用时间优先的原则,先到先执行。每个中断有一个中断屏蔽位,用户通过设置中断屏蔽位可以屏蔽对应的中断。在每个功能模块中,中断置位和清零是沿敏感;在中断控制器中,中断是电平敏感。

9. I/O 端口

9.1. 功能描述

- ▶ 最多可达 26 个GPIO
- ▶ 所有端口均可输入输出 5V 信号
- ▶ 均支持上升沿/下降沿/双边沿中断
- ▶ 均支持上/下拉电阻功能
- ▶ 均支持唤醒功能
- ▶ 可编程驱动能力,驱动电流范围 4mA ~ 64mA,每个档位调节 4mA。
- ▶ 支持OD输出低/高模式。
- > 支持独立控制的上下拉电阻,阻值 30KΩ

9.2. 结构框图

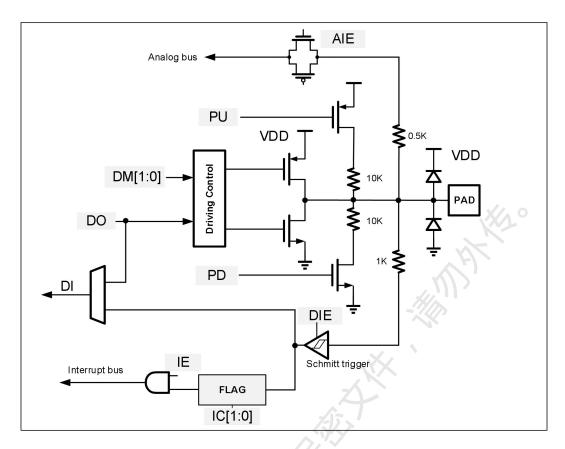


图 9-1 I0 结构图

9.3. 引脚功能复用

9.3.1. IO 引脚定义说明

- 系统有 4 组 IO, 即 P0, P1, P2, P3 组;每组内 IO 有 8 个编号从 0~7。
 - P0 组 IO 有 P00,P01,P02,P03,P04,P05,P06,P07 这 8 个引脚;
 - P1 组 IO 有 P10,P11,P12,P13,P14,P15,P16,P17 这 8 个引脚;
 - P2组IO有P20,P21,P22,P23,P24,P25,P26,P27这8个引脚;
 - P3 组 IO 只有 P30,P31 这 2 个引脚;
 - 加起来一共有 26 个 GPIO 引脚;
- 引脚编号定义说明:某个具体引脚为 P[x][y]定义, x 表示 IO 组的编号, y 表示每组 IO 内的具体编号,例如如果 IO 组编号 x=1, IO 组内的具体编号 y=7,则 P[x][y]即表示引脚 P17;(以下描述 IO 功能复用的内容基于此引脚编号定义)

9.3.2. 模拟功能引脚复用表

表 9-1 引脚模拟功能复用表

引脚	比较器	运放	ADC	ТОИСН	其他
P00			AINO	ТКО	
P01	C1N1 (AIO)		AIN1	TK1	
P02	C1P3 (AIO)		AIN2	TK2	
P03	COP3 (AIO)		AIN3	TK3	X/1°
P04	CON1 (AIO)		AIN4	TK4	
P05	CONO (AIO)		AIN5	TK5	
P06	COPO (AIO)		AIN6	TK6	
P07	COP1 (AIO)		AIN7	TK7	ADCEXREF
P10	COP2 (AIO)		AIN8	TK8	
P11	C1P2 (AIO)		AIN9	TK9	
P12	C1P1 (AIO)	. \\7	AIN10	TK10	
P13	C1P0 (AI0)		AIN11	TK11	
P14	C1NO (AIO)		AIN12	TK12	
P15	AIN_DACMP		AIN13	TK13	
P16	CCS	OP2_N	AIN14	TK14	
P17	1/4		AIN15	TK15	
P20		OP20UTF	AIN16	TK16	
P21		0P0_P/0P2_N	AIN17	TK17	OSCOUT
P22		0P0_N/0P2_P	AIN18	TK18	OSCIN
P23	C0P4/C1P4 (AIO)	0P0_0	AIN19	TK19	
P24		0P2_0	AIN20	TK20	

P25		OP2_P	AIN21	TK21	
P26	COP5/C1P5 (AIO)	0P1_0	AIN22	TK22	
P27		OP1_N	AIN23	TK23	EXCAP
P30		0P1_P	AIN24	TK24	
P31			AIN25	TK25	X/1°

9.3.3. 外设数字输出功能复用图

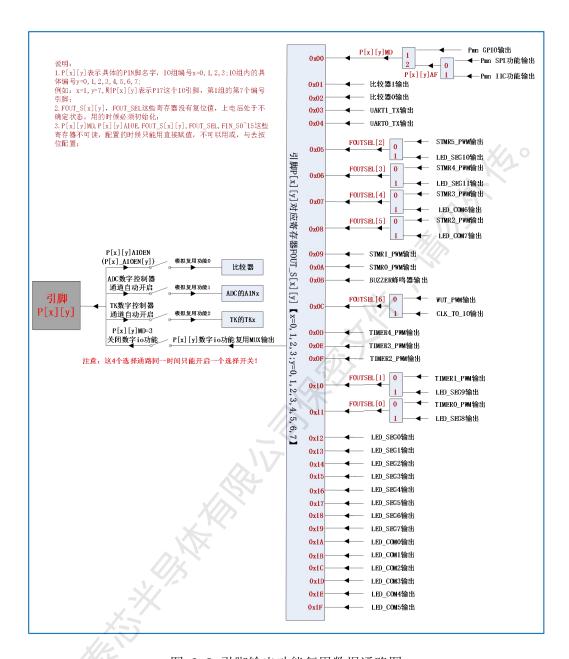


图 9-2 引脚输出功能复用数据通路图

9.3.4. 外设数字输入功能复用表

表 9-2 外设数字输入功能复用

外设输入功能	配置寄存器	引脚说明
Tmr0_cap_pin	FIN_SO	0x0: 选择固定输入低电平
Tmrl_cap_pin	FIN_S1	0x1: 选择 P00 0x2: 选择 P01
Tmr2_cap_pin	FIN_S2	0x3: 选择 P02 0x4: 选择 P03
Tmr3_cap_pin	FIN_S3	0x5: 选择 P04
Tmr4_cap0_pin	FIN_S4	0x6: 选择 P05 0x7: 选择 P06
Tmr4_cap1_pin	FIN_S5	0x8: 选择 P07 0x9: 选择 P10
Tmr4_cap2_pin	FIN_S6	0xA: 选择 P11
uart0_rx	FIN_S7	0xB: 选择 P12 0xC: 选择 P13
uart1_rx	FIN_S8	0xD: 选择 P14 0xE: 选择 P15
wut_cap_pin(唤醒定时器捕获输入)	FIN_S9	0xF: 选择 P16
port_wkup_in0(唤醒通道 0 输入)	FIN_S10	0x10: 选择 P17 0x11: 选择 P20
port_wkup_inl(唤醒通道 1 输入)	FIN_S11	0x12: 选择 P21 0x13: 选择 P22
port_wkup_in2(唤醒通道 2 输入)	FIN_S12	0x14: 选择 P23
port_wkup_in3(唤醒通道 3 输入)	FIN_S13	0x15: 选择 P24 0x16: 选择 P25
fb_in(外部引脚触发刹车)	FIN_S14	0x17: 选择 P26 0x18: 选择 P27
adc_etr (外部引脚触发 ADC)	FIN_S15	0x19: 选择 P30 0x1A: 选择 P31

9.3.5. 引脚功能复用具体配置示例

(1) 示例一: UARTO 功能引脚复用配置, UARTO_TX 选择 P15, UARTO_TX 选择 P26

//第一步:配置 UARTO_TX 功能输出选择引脚 P15, P15 方向设置为输出

P1_MD1 |= 0x1<<2; //P15MD=1,设置P15为数字I0功能输出

FOUT_S15 = 0x4; //配置 UARTO_TX 输出通路到 P15 引脚,参见本章节"外设数字输出功能复用图"

//第二步:配置 UARTO_RX 功能输入选择引脚 P26, P26 方向设置为输入

P2 MD1 &= ~(0x3<<4); //P26MD=0, 设置 P26 为数字 I0 功能输入

FIN_S7 = 0x17; //配置 UARTO_RX 功能复用寄存器 FIN_S7=0x17, 选择 P26 引脚, 参见本章节"外设数字输入功能复用表"

通过上述配置 UARTO 的功能 IO 复用,修改不同的配置可以将其任意选择映射到所有 IO 引脚上。

(2) 示例二: IIC 功能引脚复用配置, I2C SCL 选择 P13, I2C SDA 选择 P14

//第一步:配置 P13, P14 模式寄存器值为 2,选择数字功能复用功能模式

P1 MD0 |= 0x2<<6; //P13 模式寄存器选择数字功能复用模式, 参见本章节的 P1 MD0 寄存器说明

P1_MD1 |= 0x2<<0; //P14 模式寄存器选择数字功能复用模式,参见本章节的 P1_MD1 寄存器说明

//第二步: 配置 P13, P14 复用功能选择寄存器选择对应的 IIC 的功能

P1_AFO = 0x10; //P13 选择 I2C_SCL 功能, P14 选择 I2C_SDA 功能; 注意 P1_AFO 是只写寄存器

//第三步:配置 P13, P14 的数字输出通道选择 0 通道,注意 0 通道是 GPIO, IIC 和 SPI 功能输出通道

FOUT S13 = 0x0; //配置 I2C SCL 通路输出到 P13 引脚,参见本章节"外设数字输出功能复用图"

FOUT_S14 = 0x0; //配置 I2C_SDA 通路输出到 P14 引脚, 参见本章节"外设数字输出功能复用图"

(3) 示例三: 比较器 0 模拟功能引脚 IO 复用配置, COPO 选择 PO6, CONO 选择 PO5

//第一步: 关闭比较器 0 复用功能引脚的数字 IO 功能

P0_MD1 |= (0x3<<4) | (0x3<<2); //关闭 P05, P06 的数字 I0 功能, 参见本章节"外设数字输出功能复用图"

//第二步: 使能 P05, P06 的模拟比较器模拟 I0 通道

PO_AIOEN = 0x60; //使能 P05, P06 模拟比较器复用功能,参见本章节"外设数字输出功能复用图"

9.4. 寄存器列表

表 9-3 gpio register list

address	Register Name	Description
0x80 (SFR)	PO	PO 数据寄存器
0xC0 (XSFR)	PO_PU	PO 上拉电阻使能寄存器
0xC1 (XSFR)	PO_PD	PO 下拉电阻使能寄存器
0xC2 (XSFR)	PO_MDO	P0 工作模式寄存器 0
0xC3 (XSFR)	PO_MD1	P0 工作模式寄存器 1
0xC4 (XSFR)	PO_TRGO	P0 中断触发配置寄存器 0
0xC5 (XSFR)	PO_TRG1	P0 中断触发配置寄存器 1

r		
0xC6 (XSFR)	PO_PND	PO 中断 PENDING 寄存器
0xC7 (XSFR)	PO_IMK	P0 中断屏蔽寄存器
0xC8 (XSFR)	PO_AIOEN	P0 比较器模拟 I0 功能使能
0xC9 (XSFR)	PO_DRVO	PO 驱动电流配置寄存器
OxCA (XSFR)	PO_ODN	P0 开漏低使能寄存器
OxCB (XSFR)	PO_ODP	PO 开漏高使能寄存器
OxA8 (XSFR)	PO_DRV1	PO 驱动电流配置寄存器 1
OxA9 (XSFR)	PO_DRV2	PO 驱动电流配置寄存器 2
OxAA (XSFR)	PO_DRV3	PO 驱动电流配置寄存器 3
OxAB (XSFR)	PO_DRV4	PO 驱动电流配置寄存器 4
OxAC (XSFR)	PO_DRV5	PO 驱动电流配置寄存器 5
OxAD (XSFR)	PO_DRV6	PO 驱动电流配置寄存器 6
OxAE (XSFR)	PO_DRV7	PO 驱动电流配置寄存器 7
0x166 (XSFR)	PO_AFO	P0 数字外设功能复用选择配置寄存器 0
0x167 (XSFR)	PO_AF1	PO 数字外设功能复用选择配置寄存器 1
0x90 (SFR)	P1 ///	P1 数据寄存器
OxDO (XSFR)	P1_PU	P1 上拉电阻使能寄存器
OxD1 (XSFR)	P1_PD	P1 下拉电阻使能寄存器
OxD2 (XSFR)	P1_MDO	P1 工作模式寄存器 0
OxD3 (XSFR)	P1_MD1	P1 工作模式寄存器 1
0xD4 (XSFR)	P1_TRGO	P1 中断触发配置寄存器 0
OxD5 (XSFR)	P1_TRG1	P1 中断触发配置寄存器 1
0xD6 (XSFR)	P1_PND	P1 中断 PENDING 寄存器
0xD7 (XSFR)	P1_IMK	P1 中断屏蔽寄存器

	I	
OxD8 (XSFR)	P1_AIOEN	P1 比较器模拟 I0 功能使能寄存器
0xD9 (XSFR)	P1_DRV0	P1 驱动电流配置寄存器
OxDA (XSFR)	P1_ODN	P1 开漏低使能寄存器
OxDB (XSFR)	P1_ODP	P1 开漏高使能寄存器
OxAF (XSFR)	P1_DRV1	P1 驱动电流配置寄存器 1
0xB0 (XSFR)	P1_DRV2	P1 驱动电流配置寄存器 2
0xB1 (XSFR)	P1_DRV3	P1 驱动电流配置寄存器 3
0xB2 (XSFR)	P1_DRV4	P1 驱动电流配置寄存器 4
0xB3 (XSFR)	P1_DRV5	P1 驱动电流配置寄存器 5
0xB4 (XSFR)	P1_DRV6	P1 驱动电流配置寄存器 6
0xB5 (XSFR)	P1_DRV7	P1 驱动电流配置寄存器 7
0x168 (XSFR)	P1_AF0	P1 数字外设功能复用选择配置寄存器 0
0x169 (XSFR)	P1_AF1	P1 数字外设功能复用选择配置寄存器 1
OxAO (SFR)	P2	P2 数据寄存器
0xE0 (XSFR)	P2_PU	P2 上拉电阻使能寄存器
0xE1 (XSFR)	P2_PD	P2 下拉电阻使能寄存器
0xE2 (XSFR)	P2_MDO	P2 工作模式寄存器 0
0xE3 (XSFR)	P2_MD1	P2 工作模式寄存器 1
0xE4 (XSFR)	P2_TRG0	P2 中断触发配置寄存器 0
0xE5 (XSFR)	P2_TRG1	P2 中断触发配置寄存器 1
0xE6 (XSFR)	P2_PND	P2 中断 PENDING 寄存器
0xE7 (XSFR)	P2_IMK	P2 中断屏蔽寄存器
OxE8 (XSFR)	P2_AIOEN	P2 比较器模拟 IO 功能使能寄存器
0xE9 (XSFR)	P2_DRV0	P2 驱动电流配置寄存器

OxEA (XSFR)	P2_0DN	P2 开漏低使能寄存器
OxEB (XSFR)	P2_0DP	P2 开漏高使能寄存器
0xB6 (XSFR)	P2_DRV1	P2 驱动电流配置寄存器 1
0xB7 (XSFR)	P2_DRV2	P2 驱动电流配置寄存器 2
0xB8 (XSFR)	P2_DRV3	P2 驱动电流配置寄存器 3
0xB9 (XSFR)	P2_DRV4	P2 驱动电流配置寄存器 4
OxBA (XSFR)	P2_DRV5	P2 驱动电流配置寄存器 5
0xBB (XSFR)	P2_DRV6	P2 驱动电流配置寄存器 6
0xBC (XSFR)	P2_DRV7	P2 驱动电流配置寄存器 7
0x16A (XSFR)	P2_AF0	P2 数字外设功能复用选择配置寄存器 0
0x16B (XSFR)	P2_AF1	P2 数字外设功能复用选择配置寄存器 1
0xB0 (SFR)	P3	P3 数据寄存器
0xF0 (XSFR)	P3_PU	P3 上拉电阻使能寄存器
0xF1 (XSFR)	P3_PD	P3 下拉电阻使能寄存器
0xF2 (XSFR)	P3_MD0	P3 工作模式寄存器 0
0xF3 (XSFR)	P3_MD1	P3 工作模式寄存器 1
0xF4 (XSFR)	P3_TRGO	P3 中断触发配置寄存器 0
0xF5 (XSFR)	P3_TRG1	P3 中断触发配置寄存器 1
0xF6 (XSFR)	P3_PND	P3 中断 PENDING 寄存器
0xF7 (XSFR)	P3_IMK	P3 中断屏蔽寄存器
0xF8 (XSFR)	P3_AIOEN	P3 比较器模拟 I0 功能使能寄存器
0xF9 (XSFR)	P3_DRV0	P3 驱动电流配置寄存器
OxFA (XSFR)	P3_ODN	P3 开漏低使能寄存器
0xFB (XSFR)	P3_ODP	P3 开漏高使能寄存器

0xBD (XSFR)	P3 DRV1	P3 驱动电流配置寄存器 1
0x16C (XSFR)	P3 AF0	P3 数字外设功能复用选择配置寄存器 0
0x16D (XSFR)	P3 AF1	P3 数字外设功能复用选择配置寄存器 1
0x17E (XSFR)	FOUT_SOO	P00 数字功能输出选择寄存器
0x17F (XSFR)	FOUT_S01	P01 数字功能输出选择寄存器
0x180 (XSFR)	FOUT_S02	P02 数字功能输出选择寄存器
0x181 (XSFR)	FOUT_S03	P03 数字功能输出选择寄存器
0x182 (XSFR)	FOUT_SO4	P04 数字功能输出选择寄存器
0x183 (XSFR)	FOUT_S05	P05 数字功能输出选择寄存器
0x184 (XSFR)	FOUT_S06	P06 数字功能输出选择寄存器
0x185 (XSFR)	FOUT_S07	P07 数字功能输出选择寄存器
0x186 (XSFR)	FOUT_S10	P10 数字功能输出选择寄存器
0x187 (XSFR)	FOUT_S11	P11 数字功能输出选择寄存器
0x188 (XSFR)	FOUT_S12	P12 数字功能输出选择寄存器
0x189 (XSFR)	FOUT_S13	P13 数字功能输出选择寄存器
Ox18A (XSFR)	FOUT_S14	P14 数字功能输出选择寄存器
0x18B (XSFR)	FOUT_S15	P15 数字功能输出选择寄存器
0x18C (XSFR)	FOUT_S16	P16 数字功能输出选择寄存器
0x18D (XSFR)	FOUT_S17	P17 数字功能输出选择寄存器
0x18E (XSFR)	FOUT_S20	P20 数字功能输出选择寄存器
0x18F (XSFR)	FOUT_S21	P21 数字功能输出选择寄存器
0x190 (XSFR)	FOUT_S22	P22 数字功能输出选择寄存器
0x191 (XSFR)	FOUT_S23	P23 数字功能输出选择寄存器
0x192 (XSFR)	FOUT_S24	P24 数字功能输出选择寄存器

0x193 (XSFR)	FOUT_S25	P25 数字功能输出选择寄存器
0x194 (XSFR)	FOUT_S26	P26 数字功能输出选择寄存器
0x195 (XSFR)	FOUT_S27	P27 数字功能输出选择寄存器
0x196 (XSFR)	FOUT_S30	P30 数字功能输出选择寄存器
0x197 (XSFR)	FOUT_S31	P31 数字功能输出选择寄存器
0x198 (XSFR)	FOUT_SEL	数字功能输出选择寄存器
0x16E (XSFR)	FIN_SO	数字功能输入 IO 映射寄存器 0
0x16F (XSFR)	FIN_S1	数字功能输入 IO 映射寄存器 1
0x170 (XSFR)	FIN_S2	数字功能输入 IO 映射寄存器 2
0x171 (XSFR)	FIN_S3	数字功能输入 IO 映射寄存器 3
0x172 (XSFR)	FIN_S4	数字功能输入 IO 映射寄存器 4
0x173 (XSFR)	FIN_S5	数字功能输入 IO 映射寄存器 5
0x174 (XSFR)	FIN_S6	数字功能输入 IO 映射寄存器 6
0x175 (XSFR)	FIN_S7	数字功能输入 IO 映射寄存器 7
0x176 (XSFR)	FIN_S8	数字功能输入 IO 映射寄存器 8
0x177 (XSFR)	FIN_S9	数字功能输入 IO 映射寄存器 9
0x178 (XSFR)	FIN_S10	数字功能输入 IO 映射寄存器 10
0x179 (XSFR)	FIN_S11	数字功能输入 IO 映射寄存器 11
0x17A (XSFR)	FIN_S12	数字功能输入 IO 映射寄存器 12
0x17B (XSFR)	FIN_S13	数字功能输入 IO 映射寄存器 13
0x17C (XSFR)	FIN_S14	数字功能输入 IO 映射寄存器 14
0x17D (XSFR)	FIN_S15	数字功能输入 IO 映射寄存器 15

9.5. 寄存器详细说明

9.5.1. **P0**

Addr = 0x80 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	P0	PORTO 数据寄存器	RW	0x00

9.5.2. **P0_PU**

Addr = 0xC0 (XSFR)

Bit(s)	Name	Desc	ription	R/W	Reset
		P07	30KΩ上拉电阻使能位		
7	P07PU	0x0:	关闭 30KΩ上拉电阻	RW	0x0
		0x1:	使能 30KΩ上拉电阻		
		P06	30KΩ上拉电阻使能位		
6	P06PU	0x0:	关闭 30KΩ上拉电阻	RW	0x0
		0x1:	使能 30KΩ上拉电阻		
		P05	30KΩ上拉电阻使能位		
5	PO5PU	0x0:	关闭 30KΩ上拉电阻	RW	0x0
	1/	0x1:	使能 30KΩ上拉电阻		
	×_/×	P04	30KΩ上拉电阻使能位		
4	PO4PU	0x0:	关闭 30KΩ上拉电阻	RW	0x0
	145	0x1:	使能 30KΩ上拉电阻		
-1	(- 2)3	P03	30KΩ上拉电阻使能位		
3	PO3PU	0x0:	关闭 30KΩ上拉电阻	RW	0x0
7		0x1:	使能 30KΩ上拉电阻		
		P02	30KΩ上拉电阻使能位		
2	P02PU	0x0:	关闭 30KΩ上拉电阻	RW	0x0
		0x1:	使能 30KΩ上拉电阻		
1	P01PU	P01	30KΩ上拉电阻使能位	RW	0x0

		0x0:	关闭 30KΩ上拉电阻		
		0x1:	使能 30KΩ上拉电阻		
		P00	30KΩ上拉电阻使能位		
0	P00PU	0x0:	关闭 30ΚΩ上拉电阻	RW	0x0
		0x1:	使能 30ΚΩ上拉电阻		

9.5.3. **P0_PD**

Addr = 0xC1 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P07 30KΩ下拉电阻使能位		
7	P07PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P06 30KΩ下拉电阻使能位		
6	P06PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P05 30KΩ下拉电阻使能位		
5	P05PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P04 30KΩ下拉电阻使能位		
4	PO4PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0x1: 使能 30KΩ下拉电阻		
	×-7×	P03 30KΩ下拉电阻使能位		
3	P03PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
	175	0x1: 使能 30KΩ下拉电阻		
	(5)	P02 30KΩ下拉电阻使能位		
2	PO2PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
/		0x1: 使能 30KΩ下拉电阻		
		P01 30KΩ下拉电阻使能位		
1	P01PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
0	P00PD	P00 30KΩ下拉电阻使能位	RW	0x0

0x0: 关闭 30KΩ下拉电阻	
0x1: 使能 30KΩ下拉电阻	

9.5.4. **P0_MD0**

Addr = 0xC2 (XSFR)

Addi -	OxC2 (XSFR)		X/a (0
Bit(s)	Name	Description	R/W	Reset
7: 6	PO3MD	P03 工作模式寄存器. 0x0: GPI0 输入模式 0x1: GPI0 输出模式 0x2: GPI0 数字功能复用选择模式 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模式)	RW	0x0
5 : 4	PO2MD	P02 工作模式寄存器. 0x0: GPI0 输入模式 0x1: GPI0 输出模式 0x2: GPI0 数字功能复用选择模式 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模式)	RW	0x0
3: 2	PO1MD	P01 工作模式寄存器. 0x0: GPI0 输入模式 0x1: GPI0 输出模式 0x2: GPI0 数字功能复用选择模式 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模式)	RW	0x0
1: 0	POOMD	P00 工作模式寄存器. 0x0: GPI0 输入模式 0x1: GPI0 输出模式 0x2: GPI0 数字功能复用选择模式 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模式)	RW	0x0

9.5.5. **P0_MD1**

Addr = 0xC3 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	PO7MD	P07 工作模式寄存器. 0x0: GPIO 输入模式 0x1: GPIO 输出模式 0x2: GPIO 数字功能复用选择模式 0x3: GPIO 模拟 IO 工作模式(数字功能关闭模式)	RW	0x0
5: 4	P06MD	P06 工作模式寄存器. 0x0: GPI0 输入模式 0x1: GPI0 输出模式 0x2: GPI0 数字功能复用选择模式 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模式) P05 工作模式寄存器.	RW	0x0
3: 2	P05MD	0x0: GPI0 输入模式 0x1: GPI0 输出模式 0x2: GPI0 数字功能复用选择模式 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模式)	RW	0x0
1: 0	PO4MD	P04 工作模式寄存器. 0x0: GPI0 输入模式 0x1: GPI0 输出模式 0x2: GPI0 数字功能复用选择模式 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模式)	RW	0x0

9.5.6. **P0_AF0**

Addr = 0x166 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P07 数字外设功能复用选择配置寄存器.		
7	P07AF	0x0: SPI MOSI(I00) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		
		P06 数字外设功能复用选择配置寄存器.		
6	P06AF	0x0: SPICLK 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择	XA	
		P05 数字外设功能复用选择配置寄存器.	7	
5	P05AF	0x0: SPI MISO(I01) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择	7	
		P04 数字外设功能复用选择配置寄存器.		
4	P04AF	0x0: SPI MOSI(I00) 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		
		P03 数字外设功能复用选择配置寄存器.		
3	P03AF	0x0: SPICLK 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		
		P02 数字外设功能复用选择配置寄存器.		
2	P02AF	0x0: SPI MISO(I01) 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		
		P01 数字外设功能复用选择配置寄存器.		
1	P01AF	0x0: SPI MOSI(I00) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		
	×	P00 数字外设功能复用选择配置寄存器.		
0	P00AF	0x0: SPICLK 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		

9.5.7. **P0_TRG0**

Addr = 0xC4 (XSFR)

	Bit(s)	Name	Description	R/W	Reset
	7: 6	6 PO3TRG	P03 中断触发配置寄存器.	RW	0x0
l			0x0: 双边沿触发中断		

		0x1: 下降沿触发中断		
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		
		P02 中断触发配置寄存器.		
		0x0: 双边沿触发中断		
5: 4	P02TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断	XZ	0
		P01 中断触发配置寄存器.	ET.	
		0x0: 双边沿触发中断	5	
3: 2	P01TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		
		P00 中断触发配置寄存器.		
		0x0: 双边沿触发中断		
1: 0	POOTRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		

9.5.8. **P0_TRG1**

Addr = 0xC5 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	XS	P07 中断触发配置寄存器.		
	17.5	0x0: 双边沿触发中断		
7: 6	P07TRG	0x1: 下降沿触发中断	RW	0x0
	. `	0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		
		P06 中断触发配置寄存器.		
5: 4	P06TRG	0x0: 双边沿触发中断	RW	0**0
5 : 4	10014	0x1: 下降沿触发中断	I.M.	0x0
		0x2: 上升沿触发中断		

		0x3: 下降沿触发中断		
		P05 中断触发配置寄存器.		
		0x0: 双边沿触发中断		
3: 2	P05TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		
		P04 中断触发配置寄存器.	./.	
		0x0: 双边沿触发中断	13/2	5
1: 0	P04TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断	5	
		0x3: 下降沿触发中断		

9.5.9. **P0_PND**

Addr = 0xC6 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P07 中断 PENDING 寄存器.		
7	P07PND	0x0: 没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P06 中断 PENDING 寄存器.		
6	P06PND	0x0: 没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
	\X	P05 中断 PENDING 寄存器.		
5	P05PND	0x0:没有中断 PENDING	RW	0x0
	175	0x1: 有中断 PENDING		
	(2)	PO4 中断 PENDING 寄存器.		
4	PO4PND	0x0:没有中断 PENDING	RW	0x0
7		0x1: 有中断 PENDING		
		P03 中断 PENDING 寄存器.		
3	P03PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
2	PO2PND	PO2 中断 PENDING 寄存器.	RW	0x0

		0x0: 没有中断 PENDING		
		0x1: 有中断 PENDING		
		P01 中断 PENDING 寄存器.		
1	P01PND	0x0: 没有中断 PENDING	RW	0x0
		Ox1: 有中断 PENDING		
		POO 中断 PENDING 寄存器.		
0	POOPND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING	N/A	

Note: CPU 写 P0_PND 操作,则清掉 P00~P07 所有的中断标志位。所以中断使用时,中断处理函数优先将 P0_PND 通过变量进行保存,在处理完函数后,才统一进行标志位清除。如果对中断标志位 P0_PND 使用比较严格应用,建议使用不同组的 GPI0 中断。

9.5.10. **P0_IMK**

Addr = 0xC7 (XSFR)

Bit(s)	Name	Descript	tion	R/W	Reset
		P07 中国	断屏蔽寄存器.		
7	PO7IMK	0x0: 屏	蔽 IO 中断触发功能	RW	0x0
		0x1: 打	开 I0 中断触发功能		
	,	P06 中日	断屏蔽寄存器.		
6	P06IMK	0x0: 屏	蔽 I0 中断触发功能	RW	0x0
	<u> </u>	0x1: 打5	开 I0 中断触发功能		
	11115	P05 中国	断屏蔽寄存器.		
5	P05IMK	0x0: 屏	蔽 I0 中断触发功能	RW	0x0
	(2)	0x1: 打5	开 I0 中断触发功能		
《》		P04 中国	断屏蔽寄存器.		
4	PO4IMK	0x0: 屏	蔽 I0 中断触发功能	RW	0x0
		0x1: 打	开 10 中断触发功能		
		P03 中	断屏蔽寄存器.		
3	P03IMK	0x0: 屏	蔽 I0 中断触发功能	RW	0x0
		0x1: 打5	开 I0 中断触发功能		

2	PO2IMK		中断屏蔽寄存器. 屏蔽 I0 中断触发功能 打开 I0 中断触发功能	RW	0x0
1	PO1IMK	P01 0x0:	中 断屏蔽寄存器 . 屏蔽 I0 中断触发功能 打开 I0 中断触发功能	RW	0x0
0	POOIMK		中 断屏蔽寄存器 . 屏蔽 I0 中断触发功能 打开 I0 中断触发功能	RW	0x0

9.5.11. **P0_AIOEN**

Addr = 0xC8 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	PO7AIOEN	P07 模拟 I0 功能使能位. 0x0: 不使能	WO	0x0
		0x1: 使能		
6	PO6AIOEN	P06 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0
5	PO5AIOEN	P05 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0
4	PO4AIOEN	P04 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0
3	PO3AIOEN	P03 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0
2	PO2AIOEN	P02 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0

1	PO1AIOEN	P01 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0
0	POOAIOEN	P00 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0

9.5.12. **P0_AIOEN1**

Addr = OxCC (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	PO7AIOEN1	P07 模拟 I0 功能 1 使能位. 0x0: 不使能 0x1: 使能	WO	0x0
6	PO6AIOEN1	P06 模拟 I0 功能 1 使能位. 0x0: 不使能 0x1: 使能	WO	0x0
5	PO5AIOEN1	P05 模拟 I0 功能 1 使能位. 0x0: 不使能 0x1: 使能	WO	0x0
4	PO4AIOEN1	P04 模拟 I0 功能 1 使能位. 0x0: 不使能 0x1: 使能	WO	0x0
3	PO3AIOEN1	P03 模拟 I0 功能 1 使能位. 0x0: 不使能 0x1: 使能	WO	0x0
2	PO2AIOEN1	P02 模拟 I0 功能 1 使能位. 0x0: 不使能 0x1: 使能	WO	0x0
1	PO1AIOEN1	P01 模拟 I0 功能 1 使能位. 0x0: 不使能 0x1: 使能	WO	0x0

		P00 模拟 I0 功能 1 使能位.		
0	POOAIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		

9.5.13. **P0_AIOEN2**

Addr = OxCD (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P07 模拟 I0 功能 2 使能位.		
7	PO7AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P06 模拟 I0 功能 2 使能位.		
6	PO6AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P05 模拟 I0 功能 2 使能位.		
5	PO5AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P04 模拟 I0 功能 2 使能位.		
4	PO4AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
	//	P03 模拟 I0 功能 2 使能位.		
3	PO3AIOEN2	0x0: 不使能	WO	0x0
	×	0x1: 使能		
		P02 模拟 I0 功能 2 使能位.		
2	PO2AIOEN2	0x0: 不使能	WO	0x0
	-1 -	0x1: 使能		
43	7	P01 模拟 I0 功能 2 使能位.		
1	PO1AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P00 模拟 I0 功能 2 使能位.		
0	POOAIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		

9.5.14. **P0_DRV0**

Addr = 0xC9 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	_	_	- //	0
4	POODRVE	P00 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1,在原来配置驱动电流档位上再增加 12mA 的驱动能力!	wo	0x0
3: 0	POODRV	P00 驱动电流档位配置寄存器. 0x0: 4mA 0x1: 8mA 0x2: 12mA 0xF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!	WO	0x0

9.5.15. **P0_DRV1**

Addr = 0xA8 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	7.2.7	_	ı	-
		P01 驱动电流增强配置寄存器.		
44		0x0:不额外增加 12mA 驱动能力		
4	PO1DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1, 在原来配置驱动		
		电流档位上再增加 12mA 的驱动能力!		
3: 0	DO1DDV	P01 驱动电流档位配置寄存器.	WO	00
	PO1DRV	OxO: 4mA	WO	0x0

	0x1: 8mA 0x2: 12mA	
	OxF: 64mA	
	Note: 每增加一个档位,驱动能力增加 4mA!	

9.5.16. **P0_DRV2**

Addr = OxA9 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-	-	-
4	PO2DRVE	P02 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1, 在原来配置驱动电流档位上再增加 12mA 的驱动能力!	WO	0x0
3: 0	P02DRV	P02 驱动电流档位配置寄存器. 0x0: 4mA 0x1: 8mA 0x2: 12mA 0xF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!	WO	0x0

9.5.17. **P0_DRV3**

Addr = OxAA (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	_	_	_	-
4	4 DOODDVE	P03 驱动电流增强配置寄存器.	WO	0x0
4 PC	P03DRVE	0x0:不额外增加 12mA 驱动能力	WO	

		0x1: 再额外增加 12mA 驱动能力		
		Note: 该位寄存器配置为 1,在原来配置驱动		
		电流档位上再增加 12mA 的驱动能力!		
		P03 驱动电流档位配置寄存器.		
		OxO: 4mA		
		0x1: 8mA		
3 : 0	P03DRV	0x2: 12mA	WO	0x0
			XX7	0
		OxF: 64mA	UT.	
		Note: 每增加一个档位,驱动能力增加 4mA!	5	

9.5.18. **P0_DRV4**

Addr = OxAB (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-	ı	-
		P04 驱动电流增强配置寄存器.		
		0x0:不额外增加 12mA 驱动能力		
4	PO4DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1,在原来配置驱动		
		电流档位上再增加 12mA 的驱动能力!		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	P04 驱动电流档位配置寄存器.		
	×-7X	OxO: 4mA		
		0x1: 8mA		
3: 0	PO4DRV	0x2: 12mA	WO	0x0
	-Y(Z)			
\XX	-	OxF: 64mA		
7		Note: 每增加一个档位,驱动能力增加 4mA!		

9.5.19. **P0_DRV5**

Addr = OxAC (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	-	_	_	-
		P05 驱动电流增强配置寄存器.		
		0x0:不额外增加 12mA 驱动能力		
4	P05DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1,在原来配置驱动		
		电流档位上再增加 12mA 的驱动能力!	XΛ	0
		P05 驱动电流档位配置寄存器.		
		OxO: 4mA	(-1)	
		0x1: 8mA)	
3 : 0	P05DRV	0x2: 12mA	WO	0x0
		OxF: 64mA		
		Note: 每增加一个档位,驱动能力增加 4mA!		

9.5.20. **P0_DRV6**

Addr = OxAD (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	_	-10×	-	-
		P06 驱动电流增强配置寄存器.		
	-X	0x0:不额外增加 12mA 驱动能力		
4	PO6DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
	1/5	Note: 该位寄存器配置为 1,在原来配置驱动		
	17) (2x	电流档位上再增加 12mA 的驱动能力!		
XX		P06 驱动电流档位配置寄存器.		
Y		OxO: 4mA		
		0x1: 8mA		
3: 0	PO6DRV 0x2: 12mA	WO	0x0	
		OxF: 64mA		
		Note: 每增加一个档位,驱动能力增加 4mA!		

9.5.21. **P0_DRV7**

Addr = OxAE (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	- 1/	0 -
4	PO7DRVE	P07 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1, 在原来配置驱动电流档位上再增加 12mA 的驱动能力!	wo	0x0
3: 0	PO7DRV	P07 驱动电流档位配置寄存器. 0x0: 4mA 0x1: 8mA 0x2: 12mA 0xF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!		0x0

9.5.22. **P0_ODN**

Addr = OxCA (XSFR)

Bit(s)	Name	Description	R/W	Reset
	1/2X-75	P07 开漏功能使能位.		
7	D070DM	0x0: 不使能	DW	00
7	P070DN	0x1: 使能(DIN_VDD=0 时输出 0;	RW	0x0
		DIN_VDD=1 时输出高阻态)		
		P06 开漏功能使能位.		
C	DOCODN	0x0: 不使能	DW	0.0
6	P060DN	0x1: 使能(DIN_VDD=0 时输出 0;	RW	0x0
		DIN_VDD=1 时输出高阻态)		

5	P050DN	P05 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
4	PO40DN	P04 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
3	P030DN	P03 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
2	PO2ODN	P02 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
1	PO10DN	P01 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
0	POOODN	P00 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0

9.5.23. **P0_ODP**

Addr = 0xCB (XSFR)

Bit(s)	Name	Description		Reset
		P07 开漏功能使能位.		
7	P070DP	0x0: 不使能	WO	0x0
		Ox1: 使能(DIN_VDD=1 时输出 1;		

		DIN_VDD=0 时输出高阻态)		
		P06 开漏功能使能位.		
6	0x0: 不使能 P060DP	WO	0x0	
	1 000DF	Ox1: 使能(DIN_VDD=1 时输出 1;	WO	UXU
		DIN_VDD=0 时输出高阻态)		
		P05 开漏功能使能位.		
5	P050DP	0x0: 不使能	WO	0x0
J	1 03001	0x1: 使能(DIN_VDD=1 时输出 1;	WO	OXO
		DIN_VDD=0 时输出高阻态)		
		P04 开漏功能使能位.	>'	
4	PO40DP	0x0: 不使能	WO	0x0
4	1 04001	0x1: 使能(DIN_VDD=1 时输出 1;	WO	UXU
		DIN_VDD=0 时输出高阻态)		
		P03 开漏功能使能位.	WO	0x0
3	P030DP	0x0: 不使能		
	1 03001	0x1: 使能(DIN_VDD=1 时输出 1;		OAO
		DIN_VDD=0 时输出高阻态)		
		P02 开漏功能使能位.		
2	PO20DP	0x0: 不使能	WO	0x0
2	1 02001	0x1: 使能(DIN_VDD=1 时输出 1;	""	ONO
		DIN_VDD=0 时输出高阻态)		
		P01 开漏功能使能位.		
1	P010DP	0x0: 不使能	WO	0x0
		0x1: 使能(DIN_VDD=1 时输出 1;	""	ONO
	75	DIN_VDD=0 时输出高阻态)		
	1/2	P00 开漏功能使能位.		
0	P000DP	0x0: 不使能	WO	0x0
	TOODI	0x1: 使能(DIN_VDD=1 时输出 1;		
	7	DIN_VDD=0 时输出高阻态)		

9.5.24. **P1**

Addr = 0x90 (SFR)

Ī	Bit(s)	Name	escription		Reset
	7: 0	P1	PORT1 数据寄存器	RW	0x00

9.5.25. **P1_PU**

Addr = OxDO (XSFR)

Bit(s)	Name	Descri	ption	R/W	Reset
		P17 3	OKΩ上拉电阻使能位.		
7	P17PU	0x0: ≯	关闭 30KΩ上拉电阻	RW	0x0
		0x1: 仮	吏能 30KΩ上拉电阻		
		P16 3	OKΩ上拉电阻使能位.		
6	P16PU	0x0: き	关闭 30KΩ上拉电阻	RW	0x0
		0x1: 仮	吏能 30KΩ上拉电阻		
		P15 3	OKΩ上拉电阻使能位.		
5	P15PU	0x0: ≯	关闭 30KΩ上拉电阻	RW	0x0
		0x1: 仮	吏能 30KΩ上拉电阻		
		P14 3	OKΩ上拉电阻使能位.		
4	P14PU	0x0: ∋	关闭 30KΩ上拉电阻	RW	0x0
		0x1: 传	更能 30KΩ上拉电阻		
		P13 3	OKΩ上拉电阻使能位.		
3	P13PU	0x0: ∋	关闭 30KΩ上拉电阻	RW	0x0
	-X	0x1: 仮	更能 30KΩ上拉电阻		
	×55	P12 3	OKΩ上拉电阻使能位.		
2	P12PU	0x0: ∋	关闭 30KΩ上拉电阻	RW	0x0
	1-77	0x1: 仮	吏能 30KΩ上拉电阻		
× ×		P11 3	OKΩ上拉电阻使能位.		
1	P11PU	0x0: ≯	关闭 30KΩ上拉电阻	RW	0x0
		0x1: 仮	吏能 30KΩ上拉电阻		
		P10 3			
0	P10PU	0x0: き	关闭 30ΚΩ上拉电阻	RW	0x0
		0x1: 倞	吏能 30KΩ上拉电阻		

9.5.26. **P1_PD**

Addr = OxD1 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P17 30KΩ下拉电阻使能位.		
7	P17PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻	XL	
		P16 30KΩ下拉电阻使能位.	-	
6	P16PD	0x0: 关闭 30K Ω 下拉电阻	RW	0x0
		0x1: 使能 30K Ω 下拉电阻	/	
		P15 30KΩ下拉电阻使能位.		
5	P15PD	0x0: 关闭 30K Ω 下拉电阻	RW	0x0
		0x1: 使能 30K Ω 下拉电阻		
		P14 30KΩ下拉电阻使能位.		0x0
4	P14PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		0x0 0x0
		P13 30KΩ下拉电阻使能位.		
3	P13PD	0x0: 关闭 30K Ω 下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P12 30KΩ下拉电阻使能位.		
2	P12PD	0x0; 关闭 30K Ω 下拉电阻	RW	
	4	0x1: 使能 30K Ω 下拉电阻		
	-X/	P11 30KΩ下拉电阻使能位.		
1	P11PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
	1/4	0x1: 使能 30KΩ下拉电阻		
	X-75	P10 30KΩ下拉电阻使能位.		
0	P10PD	0x0: 关闭 30K Ω 下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		

9.5.27. **P1_MD0**

Addr = 0xD2 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P13 工作模式寄存器.		
		0x0: GPIO 输入模式		
7	P13MD	0x1: GPIO 输出模式	DW	0.0
7: 6	PISMD	0x2: GPI0 数字功能复用选择模式	RW	0x0
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)	XA	
		P12 工作模式寄存器.		
	0x0: GPIO 输入模式	-)		
5: 4	P12MD	0x1: GPIO 输出模式	RW	0x0
0: 4	PIZMD	0x2: GPIO 数字功能复用选择模式	RW	
		0x3: GPI0 模拟 I0 工作模式 (数字功能关闭模		
		式)		
	D11MD	P11 工作模式寄存器.		
		0x0: GPIO 输入模式		
3: 2		0x1: GPIO 输出模式	RW	
3: 4	P11MD	0x2: GPI0 数字功能复用选择模式	KW	0x0
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)		
		P10 工作模式寄存器.		
		0x0: GPIO 输入模式		
	DIOMD	0x1: GPIO 输出模式	RW	0.0
1: 0	P10MD	0x2: GPI0 数字功能复用选择模式		0x0
	×_*X	0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
	,,,5	式)		

9.5.28. **P1_MD1**

Addr = 0xD3 (XSFR)

	Bit(s)	Name	Description	R/W	Reset
	7: 6 P17MD	D17WD	P17 工作模式寄存器.	RW	0.0
		P17MD	0x0: GPIO 输入模式		0x0

	I		ı	
		0x1: GPIO 输出模式		
		0x2: GPIO 数字功能复用选择模式		
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)		
		P16 工作模式寄存器.		
		0x0: GPIO 输入模式		
		0x1: GPIO 输出模式	DŴ÷	
5 : 4	P16MD	0x2: GPIO 数字功能复用选择模式	RW	0x0
	0x3: GPIO 模技 式)	│ │ 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模)	-	
		式)		
		P15 工作模式寄存器.		
		0x0: GPIO 输入模式		
		0x1: GPIO 输出模式		
3: 2	P15MD	│ │0x2: GPI0 数字功能复用选择模式	RW	0x0
		 0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)		
		P14 工作模式寄存器.		
		 0x0: GPIO 输入模式		
1: 0		 0x1: GPIO 输出模式		
	P14MD	0x2: GPIO 数字功能复用选择模式	RW	0x0
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)		
	l .		l	

9.5.29. **P1_AF0**

Addr = 0x168 (XSFR)

Bit(s)	Name	Description	R/W	Reset
. 4		P17 数字外设功能复用选择配置寄存器.		
7	P17AF	0x0: SPICLK 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		
C	DIGAE	P16 数字外设功能复用选择配置寄存器.	WO	0.0
6	P16AF	0x0: SPI MISO(I01) 功能选择	WO	0x0

		0x1: I2C_SDA 功能选择		
		P15 数字外设功能复用选择配置寄存器.		
5	P15AF	0x0: SPI MOSI(IOO) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		
		P14 数字外设功能复用选择配置寄存器.		
4	P14AF	0x0: SPICLK 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		
		P13 数字外设功能复用选择配置寄存器.	1307	
3	P13AF	0x0: I2C_SCL 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		
		P12 数字外设功能复用选择配置寄存器.	1	
2	P12AF	0x0: SPI MOSI(I00) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		
		P11 数字外设功能复用选择配置寄存器.		
1	P11AF	0x0: SPICLK 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		
		P10 数字外设功能复用选择配置寄存器.		
0	P10AF	0x0: SPI MISO(IO1) 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		

9.5.30. **P1_TRG0**

Addr = 0xD4 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	1375	P13 中断触发配置寄存器.		
· ·	1(<->)	0x0: 双边沿触发中断		
7: 6	P13TRG	0x1: 下降沿触发中断	RW	0x0
1		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		
		P12 中断触发配置寄存器.		
5: 4	P12TRG	0x0: 双边沿触发中断	RW	0x0
		0x1: 下降沿触发中断		

		0x2: 上升沿触发中断 0x3: 下降沿触发中断		
3: 2	P11TRG	P11 中断触发配置寄存器. 0x0: 双边沿触发中断 0x1: 下降沿触发中断 0x2: 上升沿触发中断 0x3: 下降沿触发中断	RW	0x0
1: 0	P10TRG	P10 中断触发配置寄存器. 0x0: 双边沿触发中断 0x1: 下降沿触发中断 0x2: 上升沿触发中断 0x3: 下降沿触发中断	RW	0x0

9.5.31. **P1_TRG1**

Addr = 0xD5 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	P17TRG	P17 中断触发配置寄存器. 0x0: 双边沿触发中断	RW	00
7: 0	PITING	0x1: 下降沿触发中断 0x2: 上升沿触发中断 0x3: 下降沿触发中断	KW	0x0
5: 4	P16TRG	P16 中断触发配置寄存器. 0x0: 双边沿触发中断 0x1: 下降沿触发中断 0x2: 上升沿触发中断 0x3: 下降沿触发中断	RW	0x0
3: 2	P15TRG	P15 中断触发配置寄存器. 0x0: 双边沿触发中断 0x1: 下降沿触发中断 0x2: 上升沿触发中断 0x3: 下降沿触发中断	RW	0x0

		P14 中断触发配置寄存器.		
		0x0: 双边沿触发中断		
1: 0	P14TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		

9.5.32. **P1_PND**

Addr = 0xD6 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P17 中断 PENDING 寄存器.		
7	P17PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P16 中断 PENDING 寄存器.		
6	P16PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P15 中断 PENDING 寄存器.		
5	P15PND	0x0: 没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P14 中断 PENDING 寄存器.		
4	P14PND	0x0: 没有中断 PENDING	RW	0x0
	y)	Ox1: 有中断 PENDING		
	×-7×	P13 中断 PENDING 寄存器.		
3	P13PND	0x0: 没有中断 PENDING	RW	0x0
	1375	0x1: 有中断 PENDING		
	1623	P12 中断 PENDING 寄存器.		
2	P12PND	0x0: 没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P11 中断 PENDING 寄存器.		
1	P11PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
0	P10PND	P10 中断 PENDING 寄存器.	RW	0x0

	0x0: 没有中断 PENDING	
	0x1: 有中断 PENDING	

Note: CPU 写 P1_PND 操作,则清掉 P10~P17 所有的中断标志位。所以中断使用时,中断处理函数优先将 P1_PND 通过变量进行保存,在处理完函数后,才统一进行标志位清除。如果对中断标志位 P1_PND 使用比较严格应用,建议使用不同组的 GPIO 中断。

9.5.33. **P1_IMK**

Addr = 0xD7 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P17 中断屏蔽寄存器.		
7	P17IMK	0x0: 屏蔽 IO 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
		P16 中断屏蔽寄存器.		
6	P16IMK	0x0: 屏蔽 IO 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
		P15 中断屏蔽寄存器.		
5	P15IMK	0x0: 屏蔽 IO 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
		P14 中断屏蔽寄存器.		
4	P14IMK	0x0: 屏蔽 IO 中断触发功能	RW	0x0
	Y)	0x1: 打开 IO 中断触发功能		
	×-7×	P13 中断屏蔽寄存器.		
3	P13IMK	0x0: 屏蔽 IO 中断触发功能	RW	0x0
	175	0x1: 打开 IO 中断触发功能		
	Y(-/-);	P12 中断屏蔽寄存器.		
2	P12IMK	0x0: 屏蔽 IO 中断触发功能	RW	0x0
4		0x1: 打开 IO 中断触发功能		
		P11 中断屏蔽寄存器.		
1	P11IMK	0x0: 屏蔽 IO 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
0	P10IMK	P10 中断屏蔽寄存器.	RW	0x0

0x0: 屏蔽 I0 中断触发功能	
0x1: 打开 IO 中断触发功能	

9.5.34. **P1_AIOEN**

Addr = 0xD8 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P17 模拟 IO 功能使能位.	9)	
7	P17AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P16 模拟 I0 功能使能位.		
6	P16AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P15 模拟 IO 功能使能位.		
5	P15AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P14 模拟 I0 功能使能位.		
4	P14AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P13 模拟 I0 功能使能位.		
3	P13AIOEN	0x0: 不使能	WO	0x0
	V	0x1: 使能		
	×-7×	P12 模拟 I0 功能使能位.		
2	P12AIOEN	0x0: 不使能	WO	0x0
	175	0x1: 使能		
	-15-3	P11 模拟 I0 功能使能位.		
1	P11AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P10 模拟 I0 功能使能位.		
0	P10AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		

9.5.35. **P1_AIOEN1**

Addr = OxDC (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P17 模拟 I0 功能 1 使能位.		
7	P17AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能	XL	
		P16 模拟 I0 功能 1 使能位.	-	
6	P16AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P15 模拟 I0 功能 1 使能位.		
5	P15AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P14 模拟 I0 功能 1 使能位.		
4	P14AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P13 模拟 I0 功能 1 使能位.		
3	P13AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P12 模拟 I0 功能 1 使能位.		
2	P12AIOEN1	0x0: 不使能	WO	0x0
	4	0x1: 使能		
		P11 模拟 I0 功能 1 使能位.		
1	P11AIOEN1	0x0: 不使能	WO	0x0
	1/4	0x1: 使能		
	1-77 1(2)x	P10 模拟 I0 功能 1 使能位.		
0	P10AI0EN1	0x0: 不使能	WO	0x0
N/		0x1: 使能		

9.5.36. **P1_AIOEN2**

Addr = OxDD (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P17 模拟 I0 功能 2 使能位.		
7	P17AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P16 模拟 I0 功能 2 使能位.		
6	P16AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能	XA	0
		P15 模拟 I0 功能 2 使能位.		
5	P15AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P14 模拟 I0 功能 2 使能位.		
4	P14AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P13 模拟 I0 功能 2 使能位.		
3	P13AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P12 模拟 I0 功能 2 使能位.		
2	P12AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P11 模拟 I0 功能 2 使能位.		
1	P11AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
	4/	P10 模拟 I0 功能 2 使能位.		
0	P10AI0EN2	0x0: 不使能	WO	0x0
		0x1: 使能		

9.5.37. **P1_DRV0**

Addr = OxD9 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	_	_
4	P10DRVE	P10 驱动电流增强配置寄存器.	WO	0x0

		0x0:不额外增加 12mA 驱动能力		
		0x1: 再额外增加 12mA 驱动能力		
		Note: 该位寄存器配置为 1,在原来配置驱动电		
		流档位上再增加 12mA 的驱动能力!		
		P10 驱动电流档位配置寄存器.		
		OxO: 4mA		
		0x1: 8mA	. / .	
3: 0	P10DRV	0x2: 12mA	WO	0x0
			1	
		OxF: 64mA		
		Note: 每增加一个档位,驱动能力增加 4mA!		

9.5.38. **P1_DRV1**

Addr = OxAF (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	_	-	ı	-
4	P11DRVE	P11 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1, 在原来配置驱动电流档位上再增加 12mA 的驱动能力!	WO	0x0
3: 0	P11DRV	P11 驱动电流档位配置寄存器. 0x0: 4mA 0x1: 8mA 0x2: 12mA 0xF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!	WO	0x0

9.5.39. **P1_DRV2**

Addr = 0xB0 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_		_	Ī
4	P12DRVE	P12 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1, 在原来配置驱动电流档位上再增加 12mA 的驱动能力!	WO	0x0
3: 0	P12DRV	P12 驱动电流档位配置寄存器. 0x0: 4mA 0x1: 8mA 0x2: 12mA 0xF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!	WO	0x0
9.5.40. P1_DRV3 Addr = 0xB1 (XSFR)				
Bit(s)	Name	Description	R/W	Reset

Bit(s)	Name	Description	R/W	Reset
7: 6	- 75	Е	-	-
	1/2	P13 驱动电流增强配置寄存器.		
	-15-3	0x0:不额外增加 12mA 驱动能力		
4	P13DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1,在原来配置驱动电		
		流档位上再增加 12mA 的驱动能力!		
		P13 驱动电流档位配置寄存器.		
3: 0	P13DRV	OxO: 4mA	WO	00
	LIONKA	Ox1: 8mA	WO	0x0
		0x2: 12mA		

	•••••	
	OxF: 64mA	
	Note: 每增加一个档位,驱动能力增加 4mA!	

9.5.41. **P1_DRV4**

Addr = 0xB2 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	- "W	_	_
4	P14DRVE	P14 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1, 在原来配置驱动电	WO	0x0
3: 0	P14DRV	流档位上再增加 12mA 的驱动能力! P14 驱动电流档位配置寄存器. Ox0: 4mA Ox1: 8mA Ox2: 12mA OxF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!	WO	0x0

9.5.42. **P1_DRV5**

Addr = 0xB3 (XSFR)

3	6 N			
Bit(s)	Name	Description	R/W	Reset
7: 6	_	_	-	-
		P15 驱动电流增强配置寄存器.		
4	D1 EDDVE	0x0:不额外增加 12mA 驱动能力	WO	00
4	P15DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1, 在原来配置驱动电		

		流档位上再增加 12mA 的驱动能力!		
		P15 驱动电流档位配置寄存器.		
		OxO: 4mA		
		0x1: 8mA		
3 : 0	P15DRV	0x2: 12mA	WO	0x0
		OxF: 64mA	. /	
		Note: 每增加一个档位,驱动能力增加 4mA!	1X1)

9.5.43. **P1_DRV6**

Addr = 0xB4 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	_	- ZŸ.>	_	_
4	P16DRVE	P16 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1, 在原来配置驱动电流档位上再增加 12mA 的驱动能力!	WO	0x0
3: 0	P16DRV	P16 驱动电流档位配置寄存器. 0x0: 4mA 0x1: 8mA 0x2: 12mA 0xF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!	WO	0x0

9.5.44. **P1_DRV7**

Addr = 0xB5 (XSFR)

Bit(s) Name Description	R/W	Reset
-------------------------	-----	-------

7 : 5	_	-	_	_
		P17 驱动电流增强配置寄存器.		
		0x0:不额外增加 12mA 驱动能力		
4	P17DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1, 在原来配置驱动电		
		流档位上再增加 12mA 的驱动能力!		
		P17 驱动电流档位配置寄存器.	11	
		OxO: 4mA	1507	
		0x1: 8mA		
3 : 0	P17DRV	0x2: 12mA	WO	0x0
		OxF: 64mA		
		Note: 每增加一个档位,驱动能力增加 4mA!		

9.5.45. **P1_ODN**

Addr = OxDA (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	P170DN	P17 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
6	P160DN	P16 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
5	P150DN	P15 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
4	P140DN	P14 开漏功能使能位. 0x0: 不使能	RW	0x0

		0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时		
		输出高阻态)		
3	P130DN	P13 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
2	P120DN	P12 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
1	P110DN	P11 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
0	P100DN	P10 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
9.5.4	6. P1_ODP			
Add	r = 0xDB (XSFR)			

Bit(s)	Name	Description	R/W	Reset
	1/45	P17 开漏功能使能位.		
7	D170DD	0x0: 不使能	WO	0.0
	P170DP	0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时	WO	0x0
	Α'	输出高阻态)		
		P16 开漏功能使能位.		
6	D1CODD	0x0: 不使能	WO	
б	P160DP	0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时	WO	0x0
		输出高阻态)		
5	P150DP	P15 开漏功能使能位.	WO	0x0

	0x0: 不使能		
	0x1: 使能(DIN_VDD=1 时输出1; DIN_VDD=0 时		
	输出高阻态)		
	P14 开漏功能使能位.		
D1 40DD	0x0: 不使能	WO.	0.0
P140DP	0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时	WO	0x0
	输出高阻态)		
	P13 开漏功能使能位.	MY.)
D100DD	0x0: 不使能	W.O.	0.0
P130DP	0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时) WO	0x0
	输出高阻态)		
	P12 开漏功能使能位.		
D100DD	0x0: 不使能	WO.	0.0
P120DP	0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时	WO	0x0
	输出高阻态)		
	P11 开漏功能使能位.		
D11055	0x0: 不使能		
PITODP	0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时	WO	0x0
	输出高阻态)		
	P10 开漏功能使能位.		
D10055	0x0: 不使能		
P100DP	0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时	WO	0x0
	输出高阻态)		
	P140DP P130DP P110DP P100DP	Ox1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时输出高阻态)	Ox1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时输出高阻态) P14 开漏功能使能位.

9.5.47. **P2**

Addr = 0xA0 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	P2	PORT2 数据寄存器	RW	0x00

9.5.48. **P2_PU**

Addr = OxEO (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 30KΩ上拉电阻使能位.		
7	P27PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
		0x1: 使能 30KΩ上拉电阻	XL)
		P26 30KΩ上拉电阻使能位.	-	
6	P26PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
		0x1: 使能 30KΩ上拉电阻		
		P25 30KΩ上拉电阻使能位.		
5	P25PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
		0x1: 使能 30KΩ上拉电阻		
		P24 30KΩ上拉电阻使能位.		
4	P24PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
		0x1: 使能 30KΩ上拉电阻		
		P23 30KΩ上拉电阻使能位.		
3	P23PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
		0x1: 使能 30KΩ上拉电阻		
		P22 30KΩ上拉电阻使能位.		
2	P22PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
		0x1: 使能 30KΩ上拉电阻		
	-*/	P21 30KΩ上拉电阻使能位.		
1	P21PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
	JUL V	0x1: 使能 30KΩ上拉电阻		
	1-75	P20 30KΩ上拉电阻使能位.		
0	P20PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
A	ÇT.	0x1: 使能 30KΩ上拉电阻		

9.5.49. **P2_PD**

Addr = 0xE1 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 30KΩ下拉电阻使能位.		
7	P27PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P26 30KΩ下拉电阻使能位.		
6	P26PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻	X/AC)
		P25 30KΩ下拉电阻使能位.		
5	P25PD	0x0: 关闭 30K Ω 下拉电阻	RW	0x0
		0x1: 使能 30K Ω 下拉电阻	11	
		P24 30KΩ下拉电阻使能位.		
4	P24PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P23 30KΩ下拉电阻使能位.		
3	P23PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P22 30KΩ下拉电阻使能位.		
2	P22PD	0x0: 关闭 30K Ω 下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P21 30KΩ下拉电阻使能位.		
1	P21PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30K Ω 下拉电阻		
	3//	P20 30KΩ下拉电阻使能位.		
0	P20PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30K Ω 下拉电阻		

9.5.50. **P2_MD0**

Addr = 0xE2 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 C DOOM	P23 工作模式寄存器.	DW	0.0	
7: 6	P23MD	0x0: GPIO 输入模式	RW	0x0

	1		1	1
		0x1: GPIO 输出模式		
		0x2: GPIO 数字功能复用选择模式		
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)		
		P22 工作模式寄存器.		
		0x0: GPIO 输入模式		
	DOOM.	0x1: GPIO 输出模式		
5: 4	P22MD	0x2: GPI0 数字功能复用选择模式	RW	0x0
	0x3: GPIO 模拟 IO 工作模式(数字功能关闭框式)			
		式)		
	0x(P21 工作模式寄存器.		
		0x0: GPIO 输入模式		
		0x1: GPIO 输出模式		0x0
3: 2	P21MD	0x2: GPI0 数字功能复用选择模式	RW	
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)		
		P20 工作模式寄存器.		
		0x0: GPIO 输入模式		
		0x1: GPIO 输出模式		
1: 0	P20MD	0x2: GPI0 数字功能复用选择模式	RW	0x0
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)		
	I			

9.5.51. **P2_MD1**

Addr = 0xE3 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 工作模式寄存器.		
		0x0: GPIO 输入模式		
7: 6	P27MD	0x1: GPIO 输出模式	RW	0x0
		0x2: GPIO 数字功能复用选择模式		
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		

		式)		
		P26 工作模式寄存器.		
		0x0: GPIO 输入模式		
5: 4	P26MD	0x1: GPIO 输出模式	RW	0x0
5: 4	FZOMD	0x2: GPI0 数字功能复用选择模式	KW	UXU
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)	./.	
		P25 工作模式寄存器.	Ky7.	
		0x0: GPIO 输入模式	7	
3 : 2	P25MD	0x1: GPIO 输出模式	RW	0x0
); Z	0x2: 0	0x2: GPIO 数字功能复用选择模式	KW	
		0x3: GPI0 模拟 I0 工作模式 (数字功能关闭模		
		式)		
	P24 工作模式寄存器. 0x0: GPIO 输入模式 0x1: GPIO 输出模式	P24 工作模式寄存器.		0x0
		0x0: GPIO 输入模式		
1: 0		0x1: GPIO 输出模式	RW	
1: 0	12400	0x2: GPIO 数字功能复用选择模式	KW	
		0x3: GPI0 模拟 I0 工作模式(数字功能关闭模		
		式)		
		ST		
9.5.52	2. P2_AF0	NX.		
	. <	/ <u>/</u> s`		
Addr	= 0x16A (XSFR)			

Addr = 0x16A (XSFR)

Bit(s)	Name	Description	R/W	Reset
	1.45	P27 数字外设功能复用选择配置寄存器.		
7	P27AF	0x0: SPI MISO(I01) 功能选择	WO	0x0
A.X	K'	0x1: I2C_SCL 功能选择		
	, -	P26 数字外设功能复用选择配置寄存器.		
6	P26AF	0x0: SPI MOSI(I00) 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		
5	DOEAR	P25 数字外设功能复用选择配置寄存器.	WO.	
	P25AF	0x0: SPICLK 功能选择	WO	0x0

		0x1: I2C_SCL 功能选择		
		P24 数字外设功能复用选择配置寄存器.		
4	P24AF	0x0: SPI MISO(I01) 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		
		P23 数字外设功能复用选择配置寄存器.		
3	P23AF	0x0: SPI MOSI(I00) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		
		P22 数字外设功能复用选择配置寄存器.	KYZ.	
2	P22AF	0x0: SPICLK 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择)	
		P21 数字外设功能复用选择配置寄存器.		
1	P21AF	0x0: SPI MISO(I01) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		
		P20 数字外设功能复用选择配置寄存器.		
0	P20AF	0x0: SPI MOSI(I00) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		

9.5.53. **P2_TRG0**

Addr = 0xE4 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P23 中断触发配置寄存器.		
	Y/	0x0: 双边沿触发中断		
7 : 6	P23TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
	13/5	0x3: 下降沿触发中断		
	-1553	P22 中断触发配置寄存器.		
- X	长,	0x0: 双边沿触发中断		
5: 4	P22TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		
2.0	DO1 TDC	P21 中断触发配置寄存器.	DW	
3: 2	P21TRG	0x0: 双边沿触发中断	RW	0x0

		0x1: 下降沿触发中断 0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		
		P20 中断触发配置寄存器.		
		0x0:双边沿触发中断		
1: 0	P20TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断	XX)

9.5.54. **P2_TRG1**

Addr = 0xE5 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 中断触发配置寄存器.		
		0x0: 双边沿触发中断		
7: 6	P27TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		
		P26 中断触发配置寄存器.		
		0x0: 双边沿触发中断		
5: 4	P26TRG	0x1: 下降沿触发中断	RW	0x0
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0x2: 上升沿触发中断		
	<i></i> -/×	0x3: 下降沿触发中断		
	X55	P25 中断触发配置寄存器.		
	175	0x0: 双边沿触发中断		
3: 2	P25TRG	0x1: 下降沿触发中断	RW	0x0
	K'	0x2: 上升沿触发中断		
	-	0x3: 下降沿触发中断		
1: 0		P24 中断触发配置寄存器.		
	DO ATRIC	0x0: 双边沿触发中断	DW	0.0
	P24TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		

0x3: 下降沿触发中断

9.5.55. **P2_PND**

Addr = 0xE6 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 中断 PENDING 寄存器.		
7	P27PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P26 中断 PENDING 寄存器.		
6	P26PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P25 中断 PENDING 寄存器.		
5	P25PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P24 中断 PENDING 寄存器.		
4	P24PND	0x0: 没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
		P23 中断 PENDING 寄存器.		
3	P23PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
	¥//	P22 中断 PENDING 寄存器.		
2	P22PND	0x0:没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		
	1.75	P21 中断 PENDING 寄存器.		
1	P21PND	0x0: 没有中断 PENDING	RW	0x0
4)	*	0x1: 有中断 PENDING		
		P20 中断 PENDING 寄存器.		
0	P20PND	0x0: 没有中断 PENDING	RW	0x0
		0x1: 有中断 PENDING		

Note: CPU 写 P2_PND 操作,则清掉 P20~P27 所有的中断标志位。所以中断使用时,中断处理函数优先将 P2_PND 通过变量进行保存,在处理完函数后,才统一

进行标志位清除。如果对中断标志位 P2_PND 使用比较严格应用,建议使用不同组的 GPIO 中断。

9.5.56. **P2_IMK**

Addr = 0xE7 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 中断屏蔽寄存器.		
7	P27IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
		P26 中断屏蔽寄存器.		
6	P26IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
		P25 中断屏蔽寄存器.		
5	P25IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
		P24 中断屏蔽寄存器.		
4	P24IMK	0x0: 屏蔽 IO 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
		P23 中断屏蔽寄存器.		
3	P23IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		
	_ ` _}X	P22 中断屏蔽寄存器.		
2	P22IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
	11/25	0x1: 打开 IO 中断触发功能		
	-15-75	P21 中断屏蔽寄存器.		
1 4	P21IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
	7	0x1: 打开 IO 中断触发功能		
		P20 中断屏蔽寄存器.		
0	P20IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		

9.5.57. **P2_AIOEN**

Addr = 0xE8 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 模拟 I0 功能使能位.		
7	P27AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能	XLC	
		P26 模拟 I0 功能使能位.	-	
6	P26AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P25 模拟 I0 功能使能位.		
5	P25AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P24 模拟 I0 功能使能位.		
4	P24AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P23 模拟 I0 功能使能位.		
3	P23AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
		P22 模拟 I0 功能使能位.		
2	P22AIOEN	0x0: 不使能	WO	0x0
		0x1: 使能		
	-*//	P21 模拟 I0 功能使能位.		
1	P21AIOEN	0x0: 不使能	WO	0x0
	1/1	0x1: 使能		
	1-75	P20 模拟 I0 功能使能位.		
0	P20AIOEN	0x0: 不使能	WO	0x0
\ <u>\</u>	YI.	0x1: 使能		

9.5.58. **P2_AIOEN1**

Addr = 0xEC (XSFR)

Bit(s)	Name	Description	R/W	Reset
		P27 模拟 IO 功能 1 使能位.		
7	P27AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P26 模拟 I0 功能 1 使能位.		
6	P26AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能	X/A)
		P25 模拟 I0 功能 1 使能位.		
5	P25AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P24 模拟 I0 功能 1 使能位.		
4	P24AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P23 模拟 I0 功能 1 使能位.		
3	P23AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P22 模拟 I0 功能 1 使能位.		
2	P22AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
		P21 模拟 I0 功能 1 使能位.		
1	P21AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		
	-3//	P20 模拟 I0 功能 1 使能位.		
0	P20AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		

9.5.59. **P2_AIOEN2**

Addr = OxED (XSFR)

	Bit(s)	Name	Description	R/W	Reset
	7	P27AIOEN2	P27 模拟 I0 功能 2 使能位.	WO	0x0
		F27ATUENZ	0x0: 不使能	WO	

		0x1: 使能		
6	P26AIOEN2	P26 模拟 I0 功能 2 使能位. 0x0: 不使能	WO	0x0
		0x1: 使能		
		P25 模拟 I0 功能 2 使能位.		
5	P25AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能	<i>J</i> , , ,	
		P24 模拟 I0 功能 2 使能位.	KAT	
4	P24AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P23 模拟 I0 功能 2 使能位.		
3	P23AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P22 模拟 I0 功能 2 使能位.		
2	P22AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P21 模拟 I0 功能 2 使能位.		
1	P21AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P20 模拟 I0 功能 2 使能位.		
0	P20AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		

9.5.60. **P2_DRV0**

Addr = 0xE9 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	_	-
		P20 驱动电流增强配置寄存器.		
4	DOODDUE	0x0:不额外增加 12mA 驱动能力		
4	P20DRVE	Ox1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1, 在原来配置驱动电		

		流档位上再增加 12mA 的驱动能力!		
		P20 驱动电流档位配置寄存器.		
		OxO: 4mA		
		0x1: 8mA		
3: 0	P20DRV	0x2: 12mA	WO	0x0
		OxF: 64mA	./.	
		Note: 每增加一个档位,驱动能力增加 4mA!	XXI.	9

9.5.61. **P2_DRV1**

Addr = 0xB6 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-	_	-
		P21 驱动电流增强配置寄存器.		
		0x0:不额外增加12mA驱动能力		
4	P21DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1,在原来配置驱动电		
		流档位上再增加 12mA 的驱动能力!		
		P21 驱动电流档位配置寄存器.		
		OxO: 4mA		
	V/	0x1: 8mA		
3: 0	P21DRV	0x2: 12mA	WO	0x0
	1,155			
	1375	OxF: 64mA		
	-1(2)	Note: 每增加一个档位,驱动能力增加 4mA!		

9.5.62. **P2_DRV2**

Addr = 0xB7 (XSFR)

Bit(s) Name Description	R/W	Reset
-------------------------	-----	-------

7 : 6	_	_	=	-
		P22 驱动电流增强配置寄存器.		
		0x0:不额外增加 12mA 驱动能力		
4	P22DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note:该位寄存器配置为1,在原来配置驱动电		
		流档位上再增加 12mA 的驱动能力!		
		P22 驱动电流档位配置寄存器.	110	
		0x0: 4mA	KA	
		0x1: 8mA	1	
3 : 0	P22DRV	0x2: 12mA	WO	0x0
		OxF: 64mA		
		Note: 每增加一个档位,驱动能力增加 4mA!		

9.5.63. **P2_DRV3**

Addr = 0xB8 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	- //	-	1
		P23 驱动电流增强配置寄存器.		
		0x0:不额外增加 12mA 驱动能力		
4	P23DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
	×-7×	Note: 该位寄存器配置为 1,在原来配置驱动电		
		流档位上再增加 12mA 的驱动能力!		
	1375	P23 驱动电流档位配置寄存器.		
	-155	OxO: 4mA		
4	*	Ox1: 8mA		
3 : 0	P23DRV	0x2: 12mA	WO	0x0
		OxF: 64mA		
		Note: 每增加一个档位,驱动能力增加 4mA!		

9.5.64. **P2_DRV4**

Addr = 0xB9 (XSFR)

Bit(s)	Name	Description	R/W	Reset	
7 : 6	_	_	_	_	
		P24 驱动电流增强配置寄存器.			
		0x0:不额外增加 12mA 驱动能力	1XIT O		
4	P24DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0	
		Note: 该位寄存器配置为 1, 在原来配置驱动电	5)		
		流档位上再增加 12mA 的驱动能力!			
		P24 驱动电流档位配置寄存器.			
		OxO: 4mA			
		0x1: 8mA			
3 : 0	P24DRV	0x2: 12mA	WO	0x0	
		·····			
		OxF: 64mA			
		Note: 每增加一个档位,驱动能力增加 4mA!			
9.5.65. P2_DRV5 Addr = 0xBA (XSFR)					
Madi	TABIL (NOT IL)	<u>//S</u>			
Rit(s)	Name -	Description	R/W	Reset	

Bit(s)	Name	Description	R/W	Reset
7 : 5	- 75	_	ı	-
	1/1/2	P25 驱动电流增强配置寄存器.		
	-1(2)	0x0:不额外增加 12mA 驱动能力		
4	P25DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
	λ,	Note: 该位寄存器配置为 1, 在原来配置驱动电		
		流档位上再增加 12mA 的驱动能力!		
		P25 驱动电流档位配置寄存器.		
2 0	DOEDDA	OxO: 4mA		00
3: 0	P25DRV	0x1: 8mA	WO	0x0
		0x2: 12mA		

	•••••	
	OxF: 64mA	
	Note: 每增加一个档位,驱动能力增加 4mA!	

9.5.66. **P2_DRV6**

Addr = 0xBB (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	_	-	_	-
4	P26DRVE	P26 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1, 在原来配置驱动电流档位上再增加 12mA 的驱动能力!	WO	0x0
3: 0	P26DRV	P26 驱动电流档位配置寄存器. 0x0: 4mA 0x1: 8mA 0x2: 12mA 0xF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!	WO	0x0

9.5.67. **P2_DRV7**

Addr = 0xBC (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	-	-
		P27 驱动电流增强配置寄存器.		
	DOZDDVE	0x0:不额外增加 12mA 驱动能力	WO	0.0
4	P27DRVE	0x1: 再额外增加 12mA 驱动能力		0x0
		Note:该位寄存器配置为1,在原来配置驱动电		

		流档位上再增加 12mA 的驱动能力!		
		P27 驱动电流档位配置寄存器.		
		OxO: 4mA		
		0x1: 8mA		
3: 0	P27DRV	0x2: 12mA	WO	0x0
		OxF: 64mA		
		Note: 每增加一个档位,驱动能力增加 4mA!	XX7.	P

9.5.68. **P2_ODN**

Addr = OxEA (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	P270DN	P27 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
6	P260DN	P26 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
5	P250DN	P25 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
4	P240DN	P24 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
3	P230DN	P23 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时	RW	0x0

		输出高阻态)		
2	P220DN	P22 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
1	P210DN	P21 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0
0	P200DN	P20 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输出高阻态)	RW	0x0

9.5.69. **P2_ODP**

Addr = 0xEB (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	P270DP	P27 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时输出高阻态)	WO	0x0
6	P260DP	P26 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时输出高阻态)	WO	0x0
5	P250DP	P25 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时输出高阻态)	WO	0x0
4	P240DP	P24 开漏功能使能位. 0x0: 不使能	WO	0x0

		0x1: 使能(DIN_VDD=1 时输出1; DIN_VDD=0 时输		
		出高阻态)		
		P23 开漏功能使能位.		
3	D030DD	0x0: 不使能	WO	0.0
3	P230DP	Ox1: 使能(DIN_VDD=1 时输出1; DIN_VDD=0 时输	WO	0x0
		出高阻态)		
		P22 开漏功能使能位.	./.	
	DOOODD	0x0: 不使能	WO	0x0
2	P220DP	0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时输		
		出高阻态)		
		P21 开漏功能使能位.		
	D010DD	0x0: 不使能	W.O.	0.0
1	P210DP	Ox1: 使能(DIN_VDD=1 时输出1; DIN_VDD=0 时输	WO	0x0
		出高阻态)		
		P20 开漏功能使能位.		
	DOOODD	0x0: 不使能	WO	0.0
0	P200DP	0x1: 使能(DIN_VDD=1 时输出1; DIN_VDD=0 时输	WO	0x0
		出高阻态)		

9.5.70. **P3**

Addr = 0xB0 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	P3	PORT3 数据寄存器	RW	0x00

9.5.71. **P3_PU**

Addr = OxFO (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 2	_	-	-	_
1	P31PU	P31 30KΩ上拉电阻使能位.	RW	0x0

		0x0: 关闭 30KΩ上拉电阻		
		0x1: 使能 30KΩ上拉电阻		
		P30 30KΩ上拉电阻使能位.		
0	P30PU	0x0: 关闭 30KΩ上拉电阻	RW	0x0
		0x1: 使能 30KΩ上拉电阻		

9.5.72. **P3_PD**

Addr = 0xF1 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 2	_	-	_	-
		P31 30KΩ下拉电阻使能位.		
1	P31PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		
		P30 30KΩ下拉电阻使能位.		
0	P30PD	0x0: 关闭 30KΩ下拉电阻	RW	0x0
		0x1: 使能 30KΩ下拉电阻		

9.5.73. **P3_MD0**

Addr = 0xF2 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 4	- ///	-	ı	-
	-1(-2)	P31 工作模式寄存器.		
A.Y	X-IV	0x0: GPIO 输入模式		
3: 2	P31MD	0x1: GPIO 输出模式	RW	0x0
		0x2: GPIO 数字功能复用选择模式		
		0x3: GPI0 模拟 I0 工作模式 (数字功能关闭模式)		
		P30 工作模式寄存器.		
1: 0	P30MD	0x0: GPIO 输入模式	RW	0x0
		0x1: GPIO 输出模式		

0x2: GPIO 数字功能复用选择模式	
0x3: GPI0 模拟 I0 工作模式 (数字功能关闭模式)	

9.5.74. **P3_MD1**

Addr = 0xF3 (XSFR)

naar varo (asra)			x/ ₄ 0	
Bit(s)	Name	Description	R/W	Reset
7: 0	_	-	-	_

9.5.75. **P3_AF0**

Addr = 0x16C (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 2	_	-	-	_
		P31 数字外设功能复用选择配置寄存器.		
1	P31AF	0x0: SPI MISO(I01) 功能选择	WO	0x0
		0x1: I2C_SCL 功能选择		
		P30 数字外设功能复用选择配置寄存器.		
0	P30AF	0x0: SPI MOSI(I00) 功能选择	WO	0x0
		0x1: I2C_SDA 功能选择		

9.5.76. **P3_TRG0**

Addr = 0xF4 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 4	_	I	1	_
	P31TRG	P31 中断触发配置寄存器.	RW	0x0
0.0		0x0: 双边沿触发中断		
3: 2		0x1: 下降沿触发中断		
		0x2: 上升沿触发中断		

		0x3: 下降沿触发中断		
		P30 中断触发配置寄存器.		
		0x0: 双边沿触发中断		
1: 0	P30TRG	0x1: 下降沿触发中断	RW	0x0
		0x2: 上升沿触发中断		
		0x3: 下降沿触发中断		

9.5.77. **P3_TRG1**

Addr = 0xF5 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 0		_	_	-

9.5.78. **P3_PND**

Addr = 0xF6 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 2	_	- /\(\)	_	_
		P31 中断 PENDING 寄存器.		
1	P31PND	0x0:没有中断 PENDING	RW	0x0
	-X	Ox1: 有中断 PENDING		
	X=5	P30 中断 PENDING 寄存器.		
0	P30PND	0x0:没有中断 PENDING	RW	0x0
	17) -(2x	0x1: 有中断 PENDING		

Note: CPU 写 P3_PND 操作,则清掉 P30~P31 所有的中断标志位。所以中断使用时,中断处理函数优先将 P3_PND 通过变量进行保存,在处理完函数后,才统一进行标志位清除。如果对中断标志位 P3_PND 使用比较严格应用,建议使用不同组的 GPIO 中断。

9.5.79. **P3_IMK**

Addr = 0xF7 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 2	_	_	_	-
		P31 中断屏蔽寄存器.		
1	P31IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
		0x1: 打开 I0 中断触发功能		
		P30 中断屏蔽寄存器.		
0	P30IMK	0x0: 屏蔽 I0 中断触发功能	RW	0x0
		0x1: 打开 IO 中断触发功能		

9.5.80. **P3_AIOEN**

Addr = 0xF8 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 2	_	-	1	-
1	P31AIOEN	P31 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0
0	P30AIOEN	P30 模拟 I0 功能使能位. 0x0: 不使能 0x1: 使能	WO	0x0

9.5.81. **P3_AIOEN1**

Addr = OxFC (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 2	_	_	1	-
1	P31AIOEN1	P31 模拟 I0 功能 1 使能位.	WO	0x0

		0x0: 不使能		
		0x1: 使能		
		P30 模拟 I0 功能 1 使能位.		
0	P30AIOEN1	0x0: 不使能	WO	0x0
		0x1: 使能		

9.5.82. **P3_AIOEN2**

Addr = OxFD (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 2	_	-	_	-
		P31 模拟 I0 功能 2 使能位.		
1	P31AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		
		P30 模拟 I0 功能 2 使能位.		
0	P30AIOEN2	0x0: 不使能	WO	0x0
		0x1: 使能		

9.5.83. **P3_DRV0**

Addr = 0xF9 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	- 1/15	1	ı	_
	-15/-2	P30 驱动电流增强配置寄存器.		
, i	X-IV	0x0:不额外增加 12mA 驱动能力		
4	P30DRVE	0x1: 再额外增加 12mA 驱动能力	WO	0x0
		Note: 该位寄存器配置为 1,在原来配置驱动电流		
		档位上再增加 12mA 的驱动能力!		
		P30 驱动电流档位配置寄存器.		
3: 0	P30DRV	OxO: 4mA	WO	0x0
		0x1: 8mA		

	0x2: 12mA	
	•••••	
	OxF: 64mA	
	Note: 每增加一个档位,驱动能力增加 4mA!	

9.5.84. **P3_DRV1**

Addr = 0x5B (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-20	-	-
4	P31DRVE	P31 驱动电流增强配置寄存器. 0x0: 不额外增加 12mA 驱动能力 0x1: 再额外增加 12mA 驱动能力 Note: 该位寄存器配置为 1, 在原来配置驱动电流 档位上再增加 12mA 的驱动能力!	WO	0x0
3: 0	P31DRV	P31 驱动电流档位配置寄存器. 0x0: 4mA 0x1: 8mA 0x2: 12mA 0xF: 64mA Note: 每增加一个档位,驱动能力增加 4mA!	WO	0x0

9.5.85. **P3_ODN**

Addr = OxFA (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 2	_	_	-	_
		P31 开漏功能使能位.		
1	P310DN	0x0: 不使能	RW	0x0
		0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输		

		出高阻态)		
		P30 开漏功能使能位.		
D00000	D200рм	0x0: 不使能	D.W.	
0	P300DN	0x1: 使能(DIN_VDD=0 时输出 0; DIN_VDD=1 时输	RW	0x0
		出高阻态)		

9.5.86. **P3_ODP**

Addr = OxFB (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 2	_	-	_	_
1	P310DP	P31 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时输出高阻态)	WO	0x0
0	P300DP	P30 开漏功能使能位. 0x0: 不使能 0x1: 使能(DIN_VDD=1 时输出 1; DIN_VDD=0 时输出高阻态)	WO	0x0

9.5.87. **FOUT_S00**

Addr = 0x17E (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	X	_	_	-
	41	P00 输出功能选择.		
		0x0: 选择 P00AF 功能输出		
4: 0	POOFOUTS	0x1:选择cmp1_dout_dig	WO	
4: 0	r00r0013	0x2: 选择 cmp0_dout_dig	WO	_
		0x3:选择 uart1_tx		
		0x4:选择 uart0_tx		

0x5: 选择 stmr5_pwmout or
led_seg10(FOUT_SEL[2]=1)
0x6: 选择 stmr4_pwmout or
led_seg11 (FOUT_SEL[3]=1)
0x7: 选择 stmr3_pwmout or
led_com6(FOUT_SEL[4]=1)
0x8: 选择 stmr2_pwmout or
led_com7(FOUT_SEL[5]=1)
0x9: 选择 stmr1_pwmout
0xA: 选择 stmr0_pwmout
0xB: 选择 buz_out
0xC: 选择 wut_pwm_o or
Clk_to_io(FOUT_SEL[6]=1)
0xD: 选择 tmr4_pwm_o
OxE: 选择 tmr3_pwm_o
0xF: 选择 tmr2_pwm_o
0x10: 选择 tmr1_pwm_o or
led_seg9(FOUT_SEL[1]=1)
0x11: 选择 tmr0_pwm_o or
led_seg8(FOUT_SEL[0]=1)
0x12: 选择 led_seg0
0x13: 选择 led_seg1
0x14: 选择 1ed_seg2
0x15: 选择 led_seg3
0x16: 选择 led_seg4
0x17: 选择 led_seg5
0x18: 选择 led_seg6
0x19: 选择 led_seg7
0x1A: 选择 led_com0
0x1B: 选择 led_com1
0x1C: 选择 led_com2
0x1D: 选择 led_com3
0x1E: 选择 led_com4
0x1F: 选择 led_com5

9.5.88. **FOUT_S01**

Addr = 0x17F (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	- */^ 0	-
		P01 输出功能选择.	The state of the s	
		0x0: 选择 P01AF 功能输出		
		0x1: 选择 cmp1_dout_dig		
		0x2: 选择 cmp0_dout_dig		
		0x3: 选择 uart1_tx		
		0x4: 选择 uart0_tx		
		0x5: 选择 stmr5_pwmout or		
		led_seg10(FOUT_SEL[2]=1)		
		0x6: 选择 stmr4_pwmout or		
		led_seg11(FOUT_SEL[3]=1)		
		0x7: 选择 stmr3_pwmout or		
		led_com6(FOUT_SEL[4]=1)		
		0x8: 选择 stmr2_pwmout or		
4: 0	P01F0UTS	led_com7(FOUT_SEL[5]=1)	WO	_
		0x9: 选择 stmr1_pwmout		
	. 1.	0xA: 选择 stmr0_pwmout		
	J-X	0xB: 选择 buz_out		
	X	0xC: 选择 wut_pwm_o or		
	1/5	Clk_to_io(FOUT_SEL[6]=1)		
	-1(2)	0xD: 选择 tmr4_pwm_o		
, i	*	OxE: 选择 tmr3_pwm_o		
	71	0xF: 选择 tmr2_pwm_o		
		0x10: 选择 tmr1_pwm_o or		
		led_seg9(FOUT_SEL[1]=1)		
		0x11: 选择 tmr0_pwm_o or		
		led_seg8(FOUT_SEL[0]=1)		
		0x12: 选择 led_seg0		

0x13:	选择 led_seg1			
0x14:	选择 led_seg2			
0x15:	选择 led_seg3			
0x16:	选择 led_seg4			
0x17:	选择 led_seg5			
0x18:	选择 led_seg6			
0x19:	选择 led_seg7			
0x1A:	选择 led_com0		XXT.	
0x1B:	选择 led_com1	v.		
0x1C:	选择 led_com2			
0x1D:	选择 led_com3	4/10		
0x1E:	选择 led_com4			
0x1F:	选择 led_com5			

9.5.89. **FOUT_S02**

Addr = 0x180 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-	_	_
4: 0	PO2FOUTS	P02 输出功能选择. 0x0: 选择 P02AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 uart0_tx 0x5: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1) 0x7: 选择 stmr3_pwmout or led_com6(FOUT_SEL[4]=1) 0x8: 选择 stmr2_pwmout or led_com7(FOUT_SEL[5]=1)	WO	_

0x9: 选择 stmr1_pwmout		
0xA: 选择 stmr0_pwmout		
0xB: 选择 buz_out		
0xC: 选择 wut_pwm_o or		
Clk_to_io(FOUT_SEL[6]=1)		
0xD: 选择 tmr4_pwm_o		
0xE: 选择 tmr3_pwm_o		
0xF: 选择 tmr2_pwm_o	1XV2.	
0x10: 选择 tmr1_pwm_o or	1	
led_seg9(FOUT_SEL[1]=1)		
0x11: 选择 tmr0_pwm_o or		
led_seg8(FOUT_SEL[0]=1)		
0x12: 选择 led_seg0		
0x13: 选择 led_seg1		
0x14: 选择 led_seg2		
0x15: 选择 led_seg3		
0x16: 选择 led_seg4		
0x17: 选择 led_seg5		
0x18: 选择 led_seg6		
0x19: 选择 led_seg7		
0x1A: 选择 led_com0		
0x1B: 选择 led_com1		
0x1C: 选择 led_com2		
0x1D: 选择 led_com3		
0x1E: 选择 led_com4		
0x1F: 选择 led_com5		

9.5.90. **FOUT_S03**

Addr = 0x181 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	_	_	ı	_
4: 0	P03F0UTS	P03 输出功能选择.	WO	-

	0x0: 选择 P03AF 功能输出
	0x1: 选择 cmp1_dout_dig
	0x2: 选择 cmp0_dout_dig
	0x3: 选择 uart1_tx
	0x4: 选择 uart0_tx
	0x5: 选择 stmr5_pwmout or
	led_seg10(FOUT_SEL[2]=1)
	0x6: 选择 stmr4_pwmout or
	led_seg11(FOUT_SEL[3]=1)
	0x7: 选择 stmr3_pwmout or
	led_com6(FOUT_SEL[4]=1)
	0x8: 选择 stmr2_pwmout or
	led_com7(FOUT_SEL[5]=1)
	0x9: 选择 stmr1_pwmout
	0xA: 选择 stmr0_pwmout
	0xB: 选择 buz_out
	0xC: 选择 wut_pwm_o or
	Clk_to_io(FOUT_SEL[6]=1)
	0xD: 选择 tmr4_pwm_o
	0xE: 选择 tmr3_pwm_o
	0xF: 选择 tmr2_pwm_o
	0x10: 选择 tmr1_pwm_o or
	1ed_seg9(FOUT_SEL[1]=1)
->	0x11: 选择 tmr0_pwm_o or
7-5	1ed_seg8(FOUT_SEL[0]=1)
XX	0x12: 选择 led_seg0
1-15	0x13: 选择 led_seg1
X	0x14: 选择 led_seg2
37	0x15: 选择 led_seg3
	0x16: 选择 led_seg4
	0x17: 选择 led_seg5
	0x18: 选择 led_seg6
	0x19: 选择 led_seg7
	0x1A: 选择 led_com0

	0x1B: 选择 led_com1	
	0x1C: 选择 led_com2	
	0x1D: 选择 led_com3	
	0x1E: 选择 led_com4	
	0x1F: 选择 led_com5	

9.5.91. **FOUT_S04**

Addr = 0x182 (XSFR)

Bit(s)	Name	Description	-20	R/W	Reset
7 : 5	_	-		_	_
4: 0	P04F0UTS	P04 输出功能选择. 0x0: 选择 P04AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 uart0_tx 0x5: 选择 stmr5_pwmout or led_seg10 (F0UT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or led_seg11 (F0UT_SEL[3]=1) 0x7: 选择 stmr3_pwmout or led_com6 (F0UT_SEL[4]=1) 0x8: 选择 stmr2_pwmout or led_com7 (F0UT_SEL[5]=1) 0x9: 选择 stmr1_pwmout 0xA: 选择 stmr0_pwmout 0xA: 选择 stmr0_pwmout 0xB: 选择 buz_out 0xC: 选择 wut_pwm_o or Clk_to_io(F0UT_SEL[6]=1) 0xD: 选择 tmr4_pwm_o 0xE: 选择 tmr3_pwm_o 0xF: 选择 tmr2_pwm_o		WO	

0x18: 选择 led_seg6
0x19: 选择 led_seg7
0x1A: 选择 led_com0 0x1B: 选择 led_com1
0x1C: 选择 led_com2 0x1D: 选择 led_com3 0x1E: 选择 led_com4
0x1F: 选择 led_com5

Bit(s)	Name	Description	R/W	Reset
7 : 5	-		_	_
	145	P05 输出功能选择.		
	-1(2)	0x0: 选择 P05AF 功能输出		
, A	*	0x1: 选择 cmp1_dout_dig		
·	7-	0x2: 选择 cmp0_dout_dig		
4: 0	P05F0UTS	0x3:选择 uart1_tx	WO	_
		0x4: 选择 uart0_tx		
		0x5: 选择 stmr5_pwmout or		
		led_seg10(FOUT_SEL[2]=1)		
		0x6: 选择 stmr4_pwmout or		

	<pre>led_seg11 (FOUT_SEL[3]=1)</pre>	
	0x7: 选择 stmr3_pwmout or	
	<pre>led_com6(FOUT_SEL[4]=1)</pre>	
	0x8: 选择 stmr2_pwmout or	
	<pre>led_com7(FOUT_SEL[5]=1)</pre>	
	0x9: 选择 stmr1_pwmout	
	0xA: 选择 stmr0_pwmout	10.0
	0xB: 选择 buz_out	XX7°
	0xC: 选择 wut_pwm_o or	
	Clk_to_io(FOUT_SEL[6]=1)	1
	0xD: 选择 tmr4_pwm_o	
	0xE: 选择 tmr3_pwm_o	
	0xF: 选择 tmr2_pwm_o	
	0x10: 选择 tmr1_pwm_o or	
	led_seg9(FOUT_SEL[1]=1)	
	0x11: 选择 tmr0_pwm_o or	
	<pre>led_seg8(FOUT_SEL[0]=1)</pre>	
	0x12: 选择 led_seg0	
	0x13: 选择 led_seg1	
	0x14: 选择 led_seg2	
	0x15: 选择 led_seg3	
	0x16: 选择 led_seg4	
	0x17: 选择 led_seg5	
-\\	0x18: 选择 led_seg6	
1/-	0x19: 选择 led_seg7	
XIX.	0x1A: 选择 led_com0	
12775	0x1B: 选择 led_com1	
	0x1C: 选择 led_com2	
4	0x1D: 选择 led_com3	
	0x1E: 选择 led_com4	
	0x1F: 选择 led_com5	

9.5.93. **FOUT_S06**

Addr = 0x184 (XSFR)

			I	
0x14	: 选择 led_seg2			
0x15	: 选择 led_seg3			
0x16	: 选择 led_seg4			
0x17	: 选择 led_seg5			
0x18	: 选择 led_seg6			
0x19	: 选择 led_seg7			
0x1A	: 选择 led_com0		4	
0x1E	: 选择 led_com1		XX7°	
0x10	: 选择 led_com2	Y		
0x1I	: 选择 led_com3			
0x1E	: 选择 led_com4	-4/100		
0x1F	: 选择 led_com5			

9.5.94. **FOUT_S07**

Addr = 0x185 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	-	-	_	-
	Name - P07FOUTS	P07 输出功能选择. 0x0: 选择 P07AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 uart0_tx 0x5: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1)	R/W	Reset
		0x7: 选择 stmr3_pwmout or led_com6(FOUT_SEL[4]=1) 0x8: 选择 stmr2_pwmout or led_com7(FOUT_SEL[5]=1)		
		0x9: 选择 stmr1_pwmout		

0xA: 选择 stmr0_pwmout		
0xB: 选择 buz_out		
0xC: 选择 wut_pwm_o or		
Clk_to_io(FOUT_SEL[6]=1)		
0xD: 选择 tmr4_pwm_o		
OxE: 选择 tmr3_pwm_o		
0xF: 选择 tmr2_pwm_o	4.	
0x10: 选择 tmr1_pwm_o or	KX7°	
led_seg9(FOUT_SEL[1]=1)		
0x11: 选择 tmr0_pwm_o or)	
led_seg8(FOUT_SEL[0]=1)		
0x12: 选择 led_seg0		
0x13: 选择 led_seg1		
0x14: 选择 led_seg2		
0x15: 选择 led_seg3		
0x16: 选择 led_seg4		
0x17: 选择 led_seg5		
0x18: 选择 led_seg6		
0x19: 选择 led_seg7		
Ox1A: 选择 led_com0		
0x1B: 选择 led_com1		
0x1C: 选择 led_com2		
Ox1D: 选择 led_com3		
0x1E: 选择 led_com4		
0x1F: 选择 led_com5		

9.5.95. **FOUT_S10**

Addr = 0x186 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-	_	-
	P10F0UTS	P10 输出功能选择.	WO	
4: 0		0x0: 选择 P10AF 功能输出		_

	T T
0:	x1:选择 cmp1_dout_dig
0:	x2: 选择 cmp0_dout_dig
0:	x3: 选择 uart1_tx
0:	x4: 选择 uart0_tx
0:	x5: 选择 stmr5_pwmout or
	led_seg10(FOUT_SEL[2]=1)
0:	x6: 选择 stmr4_pwmout or
	led_seg11(FOUT_SEL[3]=1)
0:	x7: 选择 stmr3_pwmout or
	led_com6(FOUT_SEL[4]=1)
0:	x8: 选择 stmr2_pwmout or
	led_com7(FOUT_SEL[5]=1)
0:	x9:选择 stmr1_pwmout
0:	xA: 选择 stmr0_pwmout
0:	xB: 选择 buz_out
0:	xC: 选择 wut_pwm_o or
	Clk_to_io(FOUT_SEL[6]=1)
0:	xD: 选择 tmr4_pwm_o
0:	xE: 选择 tmr3_pwm_o
0:	xF: 选择 tmr2_pwm_o
0:	x10: 选择 tmr1_pwm_o or
	led_seg9(FOUT_SEL[1]=1)
0	x11: 选择 tmr0_pwm_o or
-\\/	led_seg8(FOUT_SEL[0]=1)
0:	x12: 选择 led_seg0
0:	x13: 选择 led_seg1
0.	x14: 选择 1ed_seg2
0.	x15: 选择 led_seg3
0.	x16: 选择 led_seg4
0.	x17: 选择 led_seg5
0.	x18: 选择 led_seg6
0.	x19: 选择 led_seg7
0.	x1A: 选择 led_com0
0.	x1B: 选择 led_com1

	0x1C: 选择 led_com2	
	0x1D: 选择 led_com3	
	0x1E: 选择 led_com4	
	0x1F: 选择 led_com5	

9.5.96. **FOUT_S11**

Addr = 0x187 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_		_	_
		P11 输出功能选择.		
		0x0: 选择 P11AF 功能输出		
		0x1:选择cmp1_dout_dig		
		0x2: 选择 cmp0_dout_dig		
		0x3: 选择 uart1_tx		
		0x4: 选择 uart0_tx		
		0x5: 选择 stmr5_pwmout or		
		led_seg10(FOUT_SEL[2]=1)		
		0x6: 选择 stmr4_pwmout or		
		led_seg11(FOUT_SEL[3]=1)		
		0x7: 选择 stmr3_pwmout or		
4: 0	P11FOUTS	led_com6(FOUT_SEL[4]=1)	WO	-
	×-7	0x8: 选择 stmr2_pwmout or		
	X	led_com7(FOUT_SEL[5]=1)		
	175	0x9: 选择 stmr1_pwmout		
	-1(-)	0xA: 选择 stmr0_pwmout		
A.	*	0xB: 选择 buz_out		
		0xC: 选择 wut_pwm_o or		
		Clk_to_io(FOUT_SEL[6]=1)		
		OxD: 选择 tmr4_pwm_o		
		OxE: 选择 tmr3_pwm_o		
		0xF: 选择 tmr2_pwm_o		
		0x10: 选择 tmrl_pwm_o or		

<pre>led_seg9(FOUT_SEL[1]=1)</pre>		
0x11: 选择 tmr0_pwm_o or		
led_seg8(FOUT_SEL[0]=1)		
0x12: 选择 led_seg0		
0x13: 选择 led_seg1		
0x14: 选择 led_seg2		
0x15: 选择 led_seg3		
0x16: 选择 led_seg4	X,T.o	
0x17: 选择 led_seg5		
0x18: 选择 led_seg6		
0x19: 选择 led_seg7		
0x1A: 选择 led_com0		
0x1B: 选择 led_com1		
0x1C: 选择 led_com2		
0x1D: 选择 led_com3		
0x1E: 选择 led_com4		
0x1F: 选择 led_com5		

9.5.97. FOUT_S12 Addr = 0x188 (XSFR)						
Bit(s)	Name	Description	R/W	Reset		
7 : 5		<-	_	ı		
4: 0	P12F0UTS	P12 输出功能选择. Ox0: 选择 P12AF 功能输出 Ox1: 选择 cmp1_dout_dig Ox2: 选择 cmp0_dout_dig Ox3: 选择 uart1_tx Ox4: 选择 uart0_tx Ox5: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) Ox6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1)	WO	-		

	0x7: 选择 stmr3_pwmout or		
	<pre>led_com6(FOUT_SEL[4]=1)</pre>		
	0x8: 选择 stmr2_pwmout or		
	<pre>led_com7 (FOUT_SEL[5]=1)</pre>		
	0x9: 选择 stmr1_pwmout		
	0xA: 选择 stmr0_pwmout		
	0xB: 选择 buz_out	4.	
	0xC: 选择 wut_pwm_o or	XX7.	
	Clk_to_io(FOUT_SEL[6]=1)		
	0xD: 选择 tmr4_pwm_o)	
	0xE: 选择 tmr3_pwm_o		
	0xF: 选择 tmr2_pwm_o		
	0x10: 选择 tmr1_pwm_o or		
	led_seg9(FOUT_SEL[1]=1)		
	0x11: 选择 tmr0_pwm_o or		
	1ed_seg8(FOUT_SEL[0]=1)		
	0x12: 选择 led_seg0		
	0x13: 选择 led_seg1		
	0x14: 选择 led_seg2		
	0x15: 选择 led_seg3		
	0x16: 选择 led_seg4		
	0x17: 选择 led_seg5		
	0x18: 选择 led_seg6		
- 5	0x19: 选择 led_seg7		
*-	0x1A: 选择 led_com0		
44	0x1B: 选择 led_com1		
127.75	0x1C: 选择 led_com2		
-165	0x1D: 选择 led_com3		
公下"	0x1E: 选择 led_com4		
	0x1F: 选择 led_com5		

9.5.98. **FOUT_S13**

Addr = 0x189 (XSFR)

7:5	Bit(s)	Name	Description	R/W	Reset
0x0:选择 P13AF 功能输出 0x1:选择 cmp1_dout_dig 0x2:选择 cmp0_dout_dig 0x3:选择 uart1_tx 0x4:选择 uart0_tx 0x5:选择 stmr5_pwmout or led_seg10 (FOUT_SEL[2]=1) 0x6:选择 stmr4_pwmout or led_seg11 (FOUT_SEL[3]=1) 0x7:选择 stmr3_pwmout or led_com6 (FOUT_SEL[4]=1) 0x8:选择 stmr2_pwmout or led_com7 (FOUT_SEL[5]=1) 0x9:选择 stmr1_pwmout	7 : 5	_	-	_	_
0xB: 选择 buz_out 0xC: 选择 wut_pwm_o or C1k_to_io(FOUT_SEL[6]=1) 0xD: 选择 tmr4_pwm_o 0xE: 选择 tmr3_pwm_o 0xF: 选择 tmr2_pwm_o	7: 5		P13 输出功能选择. Ox0: 选择 P13AF 功能输出 Ox1: 选择 cmp1_dout_dig Ox2: 选择 cmp0_dout_dig Ox3: 选择 uart1_tx Ox4: 选择 uart0_tx Ox5: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) Ox6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1) Ox7: 选择 stmr3_pwmout or led_com6(FOUT_SEL[4]=1) Ox8: 选择 stmr2_pwmout or led_com7(FOUT_SEL[5]=1) Ox9: 选择 stmr1_pwmout OxA: 选择 stmr0_pwmout OxA: 选择 stmr0_pwmout OxC: 选择 wut_pwm_o or Clk_to_io(FOUT_SEL[6]=1) OxD: 选择 tmr4_pwm_o OxE: 选择 tmr3_pwm_o	- King o	Reset

		Ī		
0x1	:选择 led_seg2			
0x1	5: 选择 led_seg3			
0x1	5:选择 led_seg4			
0x1	': 选择 led_seg5			
0x1	3:选择 led_seg6			
0x1	:选择 led_seg7			
0x1	: 选择 led_com0			
0x1	B: 选择 led_com1		12/20	
0x1	: 选择 led_com2	v)	7	
0x1): 选择 led_com3)	
0x1	: 选择 led_com4	4/100		
0x1	: 选择 led_com5			

9.5.99. **FOUT_S14**

Addr = 0x18A (XSFR)

Bit(s)	Name	Description	R/W	Reset						
7 : 5	_	-	_	-						
		P14 输出功能选择.								
		0x0: 选择 P14AF 功能输出								
		0x1: 选择 cmp1_dout_dig								
		0x2: 选择 cmp0_dout_dig								
	x-X	0x3: 选择 uart1_tx								
	0x5: 0x5: 0x6:	0x4: 选择 uart0_tx								
		P14F0UTS	P14F0UTS	0x5: 选择 stmr5_pwmout or						
4: 0				P14F0UTS	P14F0UTS	P14F0UTS	P14F0UTS	<pre>led_seg10(FOUT_SEL[2]=1)</pre>	WO	_
A.				0x6: 选择 stmr4_pwmout or						
		<pre>led_seg11 (FOUT_SEL[3]=1)</pre>								
		0x7: 选择 stmr3_pwmout or								
		led_com6(FOUT_SEL[4]=1)								
		0x8: 选择 stmr2_pwmout or								
		<pre>led_com7 (FOUT_SEL[5]=1)</pre>								
		0x9: 选择 stmr1_pwmout								

0xA: 选择 stmr0_pwmout		
0xB: 选择 buz_out		
0xC: 选择 wut_pwm_o or		
Clk_to_io(FOUT_SEL[6]=1)		
0xD: 选择 tmr4_pwm_o		
0xE: 选择 tmr3_pwm_o		
0xF: 选择 tmr2_pwm_o		
0x10: 选择 tmr1_pwm_o or	XX7°	
led_seg9(FOUT_SEL[1]=1)		
0x11: 选择 tmr0_pwm_o or)	
led_seg8(FOUT_SEL[0]=1)		
0x12: 选择 led_seg0		
0x13: 选择 led_seg1		
0x14: 选择 1ed_seg2		
0x15: 选择 led_seg3		
0x16: 选择 led_seg4		
0x17: 选择 led_seg5		
0x18: 选择 led_seg6		
0x19: 选择 led_seg7		
0x1A: 选择 led_com0		
0x1B: 选择 led_com1		
0x1C: 选择 led_com2		
Ox1D: 选择 led_com3		
0x1E: 选择 led_com4		
0x1F: 选择 led_com5		

9.5.100. **FOUT_S15**

Addr = 0x18B (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	_	_
4 0	D1 EDOUTE	P15 输出功能选择.	WO.	
4: 0 P15FOUTS	0x0: 选择 P15AF 功能输出	WO	_	

Ī	
	0x1: 选择 cmp1_dout_dig
	0x2: 选择 cmp0_dout_dig
	0x3: 选择 uart1_tx
	0x4: 选择 uart0_tx
	0x5: 选择 stmr5_pwmout or
	led_seg10(FOUT_SEL[2]=1)
	0x6: 选择 stmr4_pwmout or
	led_seg11(FOUT_SEL[3]=1)
	0x7: 选择 stmr3_pwmout or
	led_com6(FOUT_SEL[4]=1)
	0x8: 选择 stmr2_pwmout or
	led_com7(FOUT_SEL[5]=1)
	0x9: 选择 stmr1_pwmout
	0xA: 选择 stmr0_pwmout
	0xB: 选择 buz_out
	0xC: 选择 wut_pwm_o or
	Clk_to_io(FOUT_SEL[6]=1)
	0xD: 选择 tmr4_pwm_o
	0xE: 选择 tmr3_pwm_o
	0xF: 选择 tmr2_pwm_o
	0x10: 选择 tmr1_pwm_o or
	led_seg9(FOUT_SEL[1]=1)
	0x11: 选择 tmr0_pwm_o or
	led_seg8(FOUT_SEL[0]=1)
X-	0x12: 选择 led_seg0
KK	0x13: 选择 led_seg1
1-7-7	0x14: 选择 led_seg2
3 CIXO	0x15: 选择 led_seg3
47	0x16: 选择 led_seg4
	0x17: 选择 led_seg5
	0x18: 选择 led_seg6
	0x19: 选择 led_seg7
	0x1A: 选择 led_com0
	0x1B: 选择 led_com1

(0x1C: 选择 led_com2	
(0x1D: 选择 led_com3	
(0x1E: 选择 led_com4	
(0x1F: 选择 led_com5	

9.5.101. **FOUT_S16**

Addr = 0x18C (XSFR)

Bit(s)	Name	Description	R/W	Reset	
7 : 5	_		_	-	
		P16 输出功能选择.			
		0x0: 选择 P16AF 功能输出			
		0x1:选择cmp1_dout_dig			
		0x2: 选择 cmp0_dout_dig			
		0x3:选择uart1_tx			
		0x4:选择 uart0_tx			
		0x5: 选择 stmr5_pwmout or			
		<pre>led_seg10 (FOUT_SEL[2]=1)</pre>			
		0x6: 选择 stmr4_pwmout or			
		<pre>led_seg11 (FOUT_SEL[3]=1)</pre>			
		0x7: 选择 stmr3_pwmout or			
4: 0	P16F0UTS	led_com6(FOUT_SEL[4]=1)	WO	-	
		0x8: 选择 stmr2_pwmout or			
	X	<pre>led_com7(FOUT_SEL[5]=1)</pre>			
	175	0x9: 选择 stmr1_pwmout			
		Ox A	0xA: 选择 stmr0_pwmout		
\sqrt{\chi}		0xB: 选择 buz_out			
		0xC: 选择 wut_pwm_o or			
		Clk_to_io(FOUT_SEL[6]=1)			
		OxD: 选择 tmr4_pwm_o			
		OxE: 选择 tmr3_pwm_o			
		OxF: 选择 tmr2_pwm_o			
		0x10: 选择 tmr1_pwm_o or			

T T T T T T T T T T T T T T T T T T T	T		
	led_seg9(FOUT_SEL[1]=1)		
	0x11: 选择 tmr0_pwm_o or		
	led_seg8(FOUT_SEL[0]=1)		
	0x12: 选择 led_seg0		
	0x13: 选择 led_seg1		
	0x14: 选择 led_seg2		
	0x15: 选择 led_seg3	2.	
	0x16: 选择 led_seg4	1X7°	
	0x17: 选择 led_seg5		
	0x18: 选择 led_seg6)	
	0x19: 选择 led_seg7		
	0x1A: 选择 led_com0		
	0x1B: 选择 led_com1		
	0x1C: 选择 led_com2		
	0x1D: 选择 led_com3		
	0x1E: 选择 led_com4		
	0x1F: 选择 led_com5		

9.5.10 Addr	02. FOUT_ - = 0x18D (XSFR			
Bit(s)	Name	Description	R/W	Reset
7 : 5	-	<u> </u>	_	_
4: 0	P17FOUTS	P17 输出功能选择. 0x0: 选择 P17AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 uart0_tx 0x5: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1)	WO	0x0

		•	1
	0x7: 选择 stmr3_pwmout or		
	led_com6(FOUT_SEL[4]=1)		
	0x8: 选择 stmr2_pwmout or		
	led_com7(FOUT_SEL[5]=1)		
	0x9: 选择 stmr1_pwmout		
	OxA: 选择 stmr0_pwmout		
	0xB: 选择 buz_out		
	0xC: 选择 wut_pwm_o or	XX7°	
	Clk_to_io(FOUT_SEL[6]=1)		
	OxD: 选择 tmr4_pwm_o)	
	OxE: 选择 tmr3_pwm_o		
	0xF: 选择 tmr2_pwm_o		
	0x10: 选择 tmr1_pwm_o or		
	led_seg9(FOUT_SEL[1]=1)		
	0x11: 选择 tmr0_pwm_o or		
	led_seg8(FOUT_SEL[0]=1)		
	0x12: 选择 led_seg0		
	0x13:选择 led_seg1		
	0x14: 选择 led_seg2		
	0x15:选择 led_seg3		
	0x16: 选择 led_seg4		
	0x17: 选择 led_seg5		
	0x18: 选择 led_seg6		
-×	0x19: 选择 led_seg7		
X-=	0x1A: 选择 led_com0		
XX	0x1B: 选择 led_com1		
1/2	0x1C: 选择 led_com2		
3/2/57	0x1D: 选择 led_com3		
	0x1E: 选择 led_com4		
	0x1F: 选择 led_com5		

9.5.103. **FOUT_S20**

Addr = 0x18E (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	_	-	_	_
		P20 输出功能选择. Ox0: 选择 P20AF 功能输出 Ox1: 选择 cmp1_dout_dig Ox2: 选择 cmp0_dout_dig Ox3: 选择 uart1_tx Ox4: 选择 uart0_tx Ox5: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) Ox6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1) Ox7: 选择 stmr3_pwmout or led_com6(FOUT_SEL[4]=1) Ox8: 选择 stmr2_pwmout or led_com7(FOUT_SEL[5]=1) Ox9: 选择 stmr1_pwmout OxA: 选择 stmr0_pwmout OxA: 选择 stmr0_pwmout OxB: 选择 buz_out OxC: 选择 wut_pwm_o or Clk_to_io(FOUT_SEL[6]=1) OxD: 选择 tmr4_pwm_o OxE: 选择 tmr3_pwm_o OxF: 选择 tmr2_pwm_o OxF: 选择 tmr1_pwm_o or led_seg9(FOUT_SEL[1]=1) Ox11: 选择 tmr0_pwm_o or	R/W	Reset

0x1	: 选择 led_seg2			
0x1	:选择 led_seg3			
0x1	i: 选择 led_seg4			
0x1	:选择 led_seg5			
0x1	: 选择 led_seg6			
0x1	:选择 led_seg7			
0x1	:选择 led_com0		4.	
0x1	8: 选择 led_com1		XX7°	
0x1	: 选择 led_com2	v)		
0x1	:选择 led_com3	m)	1	
0x1	: 选择 led_com4	-400		
0x1	:选择 led_com5			

9.5.104. **FOUT_S21**

Addr = 0x18F (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-	_	-
., .	P21 输出功能选择.			
		0x0: 选择 P21AF 功能输出		
		0x1:选择 cmp1_dout_dig		
	.1	0x2: 选择 cmp0_dout_dig		
	\X	0x3: 选择 uart1_tx		
	1/15	0x4: 选择 uart0_tx		
		0x5: 选择 stmr5_pwmout or		
4: 0	P21F0UTS	<pre>led_seg10(FOUT_SEL[2]=1)</pre>	WO	-
, A	1/2 × 1	0x6: 选择 stmr4_pwmout or		
	7	<pre>led_seg11 (FOUT_SEL[3]=1)</pre>		
		0x7: 选择 stmr3_pwmout or		
	<pre>led_com6(FOUT_SEL[4]=1)</pre>			
	0x8: 选择 stmr2_pwmout or			
		<pre>led_com7 (FOUT_SEL[5]=1)</pre>		
		0x9:选择stmr1_pwmout		

0xA: 选择 stmr0_pwmout		
0xB: 选择 buz_out		
0xC: 选择 wut_pwm_o or		
Clk_to_io(FOUT_SEL[6]=1)		
0xD: 选择 tmr4_pwm_o		
0xE: 选择 tmr3_pwm_o		
0xF: 选择 tmr2_pwm_o		
0x10: 选择 tmr1_pwm_o or	KYZ.	
led_seg9(FOUT_SEL[1]=1)		
0x11: 选择 tmr0_pwm_o or)	
led_seg8(FOUT_SEL[0]=1)		
0x12: 选择 1ed_seg0		
0x13: 选择 led_seg1		
0x14: 选择 1ed_seg2		
0x15: 选择 led_seg3		
0x16: 选择 led_seg4		
0x17: 选择 led_seg5		
0x18: 选择 1ed_seg6		
0x19: 选择 1ed_seg7		
0x1A: 选择 led_com0		
0x1B: 选择 led_com1		
0x1C: 选择 led_com2		
0x1D: 选择 1ed_com3		
0x1E: 选择 led_com4		
0x1F: 选择 led_com5		

9.5.105. **FOUT_S22**

Addr = 0x190 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	_	_
4: 0 P22F0UTS	P22 输出功能选择.	WO		
	P22F0015	0x0: 选择 P22AF 功能输出	WO	_

	0x1: 选择 cmp1_dout_dig
	0x2: 选择 cmp0_dout_dig
	0x3: 选择 uart1_tx
	0x4: 选择 uart0_tx
	0x5: 选择 stmr5_pwmout or
	led_seg10(FOUT_SEL[2]=1)
	0x6: 选择 stmr4_pwmout or
	led_seg11(FOUT_SEL[3]=1)
	0x7: 选择 stmr3_pwmout or
	led_com6(FOUT_SEL[4]=1)
	0x8: 选择 stmr2_pwmout or
	led_com7(FOUT_SEL[5]=1)
	0x9: 选择 stmr1_pwmout
	0xA: 选择 stmr0_pwmout
	0xB: 选择 buz_out
	0xC: 选择 wut_pwm_o or
	Clk_to_io(FOUT_SEL[6]=1)
	0xD: 选择 tmr4_pwm_o
	0xE: 选择 tmr3_pwm_o
	0xF: 选择 tmr2_pwm_o
	0x10: 选择 tmr1_pwm_o or
	led_seg9(FOUT_SEL[1]=1)
	0x11: 选择 tmr0_pwm_o or
->	led_seg8(FOUT_SEL[0]=1)
X-3	0x12: 选择 led_seg0
XX	0x13: 选择 led_seg1
1/2	0x14: 选择 led_seg2
*Z	0x15: 选择 led_seg3
	0x16: 选择 led_seg4
	0x17: 选择 led_seg5
	0x18: 选择 led_seg6
	0x19: 选择 led_seg7
	0x1A: 选择 led_com0
	0x1B: 选择 led_com1

	0x1C: 选择 led_com2	
	0x1D: 选择 led_com3	
	0x1E: 选择 led_com4	
	0x1F: 选择 led_com5	

9.5.106. **FOUT_S23**

Addr = 0x191 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_			ı
	P23FOUTS	P23 输出功能选择. 0x0: 选择 P23AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 uart0_tx 0x5: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1) 0x7: 选择 stmr3_pwmout or led_com6(FOUT_SEL[4]=1) 0x8: 选择 stmr2_pwmout or led_com7(FOUT_SEL[5]=1) 0x9: 选择 stmr1_pwmout 0xA: 选择 stmr0_pwmout 0xA: 选择 stmr0_pwmout 0xC: 选择 wut_pwm_o or	WO	

	1	-	
led_seg	9 (FOUT_SEL[1]=1)		
0x11: 选	择 tmr0_pwm_o or		
led_seg	8 (FOUT_SEL[0]=1)		
0x12: 选	择 led_seg0		
0x13: 选	择 led_seg1		
0x14: 选	择 1ed_seg2		
0x15: 选	择 led_seg3	4	
0x16: 选	择 led_seg4	1XT0	
0x17: 选	择 led_seg5		
0x18: 选	择 led_seg6)	
0x19: 选	择 led_seg7		
0x1A: 选	择 led_com0		
0x1B: 选	择 led_com1		
0x1C: 选	择 led_com2		
0x1D: 选	择 led_com3		
0x1E: 选	择 led_com4		
0x1F: 选	择 led_com5		
	1/1/2		
	~1\7		
9.5.107. FOUT_S24	St		
X			
Addr = 0x192 (XSFR)			

Bit(s)	Name	Description	R/W	Reset
7 : 5	>	<u> </u>	_	-
		P24 输出功能选择.		
	145	0x0: 选择 P24AF 功能输出		
	-1(2)	0x1:选择 cmp1_dout_dig		
A)	4: 0 P24F0UTS	0x2: 选择 cmp0_dout_dig		
4 0		0x3:选择 uart1_tx	WO	_
4: 0		0x4: 选择 uart0_tx	WO	
		0x5: 选择 stmr5_pwmout or		
		led_seg10(FOUT_SEL[2]=1)		
		0x6: 选择 stmr4_pwmout or		
		led_seg11(FOUT_SEL[3]=1)		

0x7: 选择 stmr3_pwmout or	
1ed_com6(FOUT_SEL[4]=1)	
0x8: 选择 stmr2_pwmout or	
led_com7(FOUT_SEL[5]=1)	
0x9: 选择 stmr1_pwmout	
0xA: 选择 stmr0_pwmout	
0xB: 选择 buz_out	
0xC: 选择 wut_pwm_o or	
Clk_to_io(FOUT_SEL[6]=1)	
0xD: 选择 tmr4_pwm_o	
0xE: 选择 tmr3_pwm_o	
0xF: 选择 tmr2_pwm_o	
0x10: 选择 tmr1_pwm_o or	
1ed_seg9(FOUT_SEL[1]=1)	
0x11: 选择 tmr0_pwm_o or	
led_seg8(FOUT_SEL[0]=1)	
0x12: 选择 led_seg0	
0x13: 选择 led_seg1	
0x14: 选择 led_seg2	
0x15: 选择 led_seg3	
0x16: 选择 led_seg4	
0x17: 选择 led_seg5	
0x18: 选择 led_seg6	
0x19: 选择 led_seg7	
0x1A: 选择 led_com0	
0x1B: 选择 led_com1	
0x1C: 选择 led_com2	
0x1D: 选择 led_com3	
0x1E: 选择 led_com4	
0x1F: 选择 led_com5	

9.5.108. **FOUT_S25**

Addr = 0x193 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	-	_	_	_
7: 5 4: 0	P25FOUTS	P25 输出功能选择. 0x0: 选择 P25AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1) 0x7: 选择 stmr3_pwmout or led_com6(FOUT_SEL[4]=1) 0x8: 选择 stmr2_pwmout or led_com7(FOUT_SEL[5]=1) 0x9: 选择 stmr1_pwmout 0xA: 选择 stmr0_pwmout 0xA: 选择 stmr0_pwmout 0xB: 选择 buz_out 0xC: 选择 wut_pwm_o or	WO	

0.1	4 24 47 1 1 0			
UXI	4: 选择 led_seg2			
0x1	5:选择 led_seg3			
0x1	6:选择 led_seg4			
0x1	7:选择 led_seg5			
0x1	B: 选择 led_seg6			
0x1	9:选择 led_seg7			
0x1	A: 选择 led_com0			
0x1	B: 选择 led_com1		M.	
0x1	C: 选择 led_com2	r)		
0x1	D: 选择 led_com3			
0x1	E: 选择 led_com4	Him		
0x1	E: 选择 led_com5			

9.5.109. **FOUT_S26**

Addr = 0x194 (XSFR)

Name	Description	R/W	Reset
_	-	_	_
Name - P26FOUTS	P26 输出功能选择. 0x0: 选择 P26AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 uart0_tx 0x5: 选择 stmr5_pwmout or led_seg10(FOUT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or led_seg11(FOUT_SEL[3]=1)	R/W	Reset _
0	0x7:选择stmr3_pwmout or led_com6(FOUT_SEL[4]=1) 0x8:选择stmr2_pwmout or led_com7(FOUT_SEL[5]=1) 0x9:选择stmr1_pwmout		
	- * * * * * * * * * * * * * * * * * * *	- P26 输出功能选择. 0x0: 选择 P26AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 uart0_tx 0x5: 选择 stmr5_pwmout or 1ed_seg10(FOUT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or 1ed_seg11(FOUT_SEL[3]=1) 0x7: 选择 stmr3_pwmout or 1ed_com6(FOUT_SEL[4]=1) 0x8: 选择 stmr2_pwmout or	- P26 输出功能选择. 0x0: 选择 P26AF 功能输出 0x1: 选择 cmp1_dout_dig 0x2: 选择 cmp0_dout_dig 0x3: 选择 uart1_tx 0x4: 选择 uart0_tx 0x5: 选择 stmr5_pwmout or 1ed_seg10(FOUT_SEL[2]=1) 0x6: 选择 stmr4_pwmout or 1ed_seg11(FOUT_SEL[3]=1) 0x7: 选择 stmr3_pwmout or 1ed_com6(FOUT_SEL[4]=1) 0x8: 选择 stmr2_pwmout or 1ed_com7(FOUT_SEL[5]=1)

_	
	0xA: 选择 stmr0_pwmout
	0xB: 选择 buz_out
	0xC: 选择 wut_pwm_o or
	C1k_to_io(FOUT_SEL[6]=1)
	0xD: 选择 tmr4_pwm_o
	0xE: 选择 tmr3_pwm_o
	0xF: 选择 tmr2_pwm_o
	0x10: 选择 tmr1_pwm_o or
	led_seg9(FOUT_SEL[1]=1)
	0x11: 选择 tmr0_pwm_o or
	led_seg8(FOUT_SEL[0]=1)
	0x12: 选择 led_seg0
	0x13: 选择 led_seg1
	0x14: 选择 led_seg2
	0x15: 选择 led_seg3
	0x16: 选择 led_seg4
	0x17: 选择 led_seg5
	0x18: 选择 led_seg6
	0x19: 选择 led_seg7
	0x1A: 选择 led_com0
	0x1B: 选择 led_com1
	0x1C: 选择 led_com2
	0x1D: 选择 led_com3
	0x1E: 选择 led_com4
メ-	0x1F: 选择 led_com5

9.5.110. **FOUT_S27**

Addr = 0x195 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	-	_
4 0	DOZEOUTC	P27 输出功能选择.	WO	
4: 0	P27F0UTS	0x0: 选择 P27AF 功能输出	WO	_

0x1:	选择 cmp1_dout_dig		
0x2:	选择 cmp0_dout_dig		
0x3:	选择 uart1_tx		
0x4;	选择 uart0_tx		
0x5:	选择 stmr5_pwmout or		
	<pre>led_seg10(FOUT_SEL[2]=1)</pre>		
0x6:	选择 stmr4_pwmout or	.// 0	
	led_seg11(FOUT_SEL[3]=1)	KYZ.	
0x7:	选择 stmr3_pwmout or		
	led_com6(FOUT_SEL[4]=1)		
0x8:	选择 stmr2_pwmout or		
	led_com7(FOUT_SEL[5]=1)		
0x9:	选择 stmr1_pwmout		
OxA:	选择 stmr0_pwmout		
0xB:	选择 buz_out		
0xC:	选择 wut_pwm_o or		
	C1k_to_io(FOUT_SEL[6]=1)		
0xD:	选择 tmr4_pwm_o		
0xE:	选择 tmr3_pwm_o		
0xF:	选择 tmr2_pwm_o		
0x10:	选择 tmr1_pwm_o or		
led_	seg9(FOUT_SEL[1]=1)		
0x11:	选择 tmr0_pwm_o or		
led_	_seg8(FOUT_SEL[0]=1)		
0x12:	选择 led_seg0		
0x13:	选择 led_seg1		
0x14:	选择 led_seg2		
0x15:	选择 led_seg3		
0x16:	选择 led_seg4		
0x17:	选择 led_seg5		
0x18:	选择 led_seg6		
0x19:	选择 led_seg7		
0x1A:	选择 led_com0		
0x1B:	选择 led_com1		

	0x1C: 选择 led_com2	
	0x1D: 选择 led_com3	
	0x1E: 选择 led_com4	
	0x1F: 选择 led_com5	

9.5.111. **FOUT_S30**

Addr = 0x196 (XSFR)

7: 5	2//.	R/W	Reset
1. 0	-20	_	ı
P30 输出功能 0x0: 选择 P3 0x1: 选择 cm 0x2: 选择 cm 0x3: 选择 ua 0x4: 选择 ua 0x5: 选择 st led_seg 0x6: 选择 st led_seg 0x7: 选择 st led_con 0x8: 选择 st led_con 0x9: 选择 st 0xA: 选择 st 0xA: 选择 st 0xA: 选择 st	OAF 功能输出 pl_dout_dig p0_dout_dig rtl_tx rt0_tx mr5_pwmout or g10(FOUT_SEL[2]=1) mr4_pwmout or g11(FOUT_SEL[3]=1) mr3_pwmout or n6(FOUT_SEL[4]=1) mr2_pwmout or n7(FOUT_SEL[5]=1) mr1_pwmout mr0_pwmout t_cout t_pwm_o or o_io(FOUT_SEL[6]=1) r4_pwm_o r3_pwm_o	WO	

led_seg9(FOUT_SEL[1]=1)	
0x11: 选择 tmr0_pwm_o or	
led_seg8(FOUT_SEL[0]=1)	
0x12: 选择 led_seg0	
0x13: 选择 led_seg1	
0x14: 选择 led_seg2	
0x15: 选择 led_seg3	
0x16: 选择 led_seg4	0
0x17: 选择 led_seg5	
0x18: 选择 led_seg6	
0x19: 选择 led_seg7	
0x1A: 选择 led_com0	
0x1B: 选择 led_com1	
0x1C: 选择 led_com2	
0x1D: 选择 led_com3	
0x1E: 选择 led_com4	
0x1F: 选择 led_com5	

9.5.112. **FOUT_S31**

Addr = 0x197 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	>	<u> </u>	_	_
1.5	P31 输出功能选择.			
	175	0x0: 选择 P31AF 功能输出		
	-1(2)	0x1: 选择 cmp1_dout_dig		
A.	*	0x2: 选择 cmp0_dout_dig		
4: 0	P31FOUTS	0x3:选择 uart1_tx	WO	_
4: 0	1 011 0015	0x4:选择 uart0_tx	# O	
		0x5: 选择 stmr5_pwmout or		
		<pre>led_seg10(FOUT_SEL[2]=1)</pre>		
		0x6: 选择 stmr4_pwmout or		
		led_seg11(FOUT_SEL[3]=1)		

	0x7: 选择 stmr3_pwmout or		
	<pre>led_com6(FOUT_SEL[4]=1)</pre>		
	0x8: 选择 stmr2_pwmout or		
	<pre>led_com7(FOUT_SEL[5]=1)</pre>		
	0x9: 选择 stmr1_pwmout		
	0xA: 选择 stmr0_pwmout		
	0xB: 选择 buz_out		
	0xC: 选择 wut_pwm_o or	1320	
	Clk_to_io(FOUT_SEL[6]=1)		
	0xD: 选择 tmr4_pwm_o	0	
	0xE: 选择 tmr3_pwm_o		
	0xF: 选择 tmr2_pwm_o		
	0x10: 选择 tmrl_pwm_o or		
	led_seg9(FOUT_SEL[1]=1)		
	0x11: 选择 tmr0_pwm_o or		
	led_seg8(FOUT_SEL[0]=1)		
	0x12: 选择 led_seg0		
	0x13: 选择 led_seg1		
	0x14: 选择 led_seg2		
	0x15: 选择 led_seg3		
	0x16: 选择 led_seg4		
	0x17: 选择 led_seg5		
	0x18: 选择 led_seg6		
__	0x19: 选择 led_seg7		
7.7	0x1A: 选择 led_com0		
	0x1B: 选择 led_com1		
1,37.75	0x1C: 选择 led_com2		
-155	0x1D: 选择 led_com3		
4%F.	0x1E: 选择 led_com4		
The state of the s	0x1F: 选择 led_com5		

9.5.113. **FOUT_SEL**

Addr = 0x198 (XSFR)

İ	Bit(s)	Name	Description	R/W	Reset
	7: 0	FOUT_SEL	功能输出 io 复用通道的选择位	WO	_

9.5.114. **FIN_S0**

Addr = 0x16E (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	- <u>'IX</u>	-	_
4: 0	TOCAPFINS	tmr0_cap_pin 输入功能 pin 脚选择. 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03 0x5: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11 0xB: 选择 P12 0xC: 选择 P13 0xD: 选择 P15 0xF: 选择 P15 0xF: 选择 P16 0x10: 选择 P17 0x11: 选择 P20 0x12: 选择 P21 0x13: 选择 P21	WO	0x0

(Ox14: 选择 P23	
	0x15: 选择 P24	
	0x16: 选择 P25	
	0x17: 选择 P26	
	0x18: 选择 P27	
	0x19: 选择 P30	
(0x1A: 选择 P31	

9.5.115. **FIN_S1**

Addr = 0x16F (XSFR)

Bit(s)	Name	Description	, XX	R/W	Reset
7 : 5	_	-	4	-	-
4: 0	T1CAPFINS	tmr1_cap_pin 输入功能 pin 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03 0x5: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11 0xB: 选择 P12 0xC: 选择 P13 0xD: 选择 P15 0xF: 选择 P16 0x10: 选择 P17 0x11: 选择 P20 0x12: 选择 P21	脚选择.	WO	0x0

0x13:	选择 P22		
0x14:	选择 P23		
0x15:	选择 P24		
0x16:	选择 P25		
0x17:	选择 P26		
0x18:	选择 P27		
0x19:	选择 P30		
Ox1A:	选择 P31	W1°	

9.5.116. **FIN_S2**

Addr = 0x170 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	- 為	_	-
4: 0	T2CAPFINS	tmr2_cap_pin 输入功能 pin 脚选择. 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03 0x5: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11 0xB: 选择 P12 0xC: 选择 P13 0xD: 选择 P15 0xF: 选择 P16 0x10: 选择 P17 0x11: 选择 P20	WO	0x0

0x12	: 选择 P21		
0x13	: 选择 P22		
0x14	: 选择 P23		
0x15	: 选择 P24		
0x16	: 选择 P25		
0x17	: 选择 P26		
0x18	: 选择 P27		
0x19	: 选择 P30	1X7°	
0x1A	: 选择 P31	70	

9.5.117. **FIN_S3**

Addr = 0x171 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	-	-	_	-
4: 0	T3CAPFINS	tmr3_cap_pin 输入功能pin 脚选择. 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03 0x5: 选择 P04 0x6: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11 0xB: 选择 P12 0xC: 选择 P13 0xD: 选择 P15 0xF: 选择 P16 0x10: 选择 P16	WO	0x0

0x11:	选择 P20		
0x12:	选择 P21		
0x13:	选择 P22		
0x14:	选择 P23		
0x15:	选择 P24		
0x16:	选择 P25		
0x17:	选择 P26		
0x18:	选择 P27	/X/To	
0x19:	选择 P30		
0x1A:	选择 P31		

9.5.118. **FIN_S4**

Addr = 0x172 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-	-	-
4: 0	T4CAPOFINS	tmr4_cap0_pin 输入功能pin 脚选择. 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03 0x5: 选择 P04 0x6: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11 0xB: 选择 P12 0xC: 选择 P13 0xD: 选择 P15 0xF: 选择 P16	WO	0x0

0x10:	: 选择 P17			
0x11:	: 选择 P20			
0x12:	: 选择 P21			
0x13:	: 选择 P22			
0x14:	: 选择 P23			
0x15:	: 选择 P24			
0x16:	: 选择 P25			
0x17:	: 选择 P26		1X7°	
0x18:	: 选择 P27	Ý		
0x19:	: 选择 P30			
0x1A:	: 选择 P31	4/12		

9.5.119. **FIN_S5**

Addr = 0x173 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	ı	_
4: 0	T4CAP1FINS	tmr4_cap1_pin 输入功能pin 脚选择. 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03 0x5: 选择 P04 0x6: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11 0xB: 选择 P12 0xC: 选择 P13 0xD: 选择 P14 0xE: 选择 P15	WO	0x0

0xF:	选择 P16			
0x10): 选择 P17			
0x11	: 选择 P20			
0x12	2: 选择 P21			
0x13	8. 选择 P22			
0x14	: 选择 P23			
0x15	5. 选择 P24			
0x16	5. 选择 P25		1X7°	
0x17	'. 选择 P26	(2)		
0x18	3. 选择 P27	M)	
0x19): 选择 P30	4/10		
0x1A	.: 选择 P31			

9.5.120. **FIN_S6**

Addr = 0x174 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	-	_	-
7: 5 4: 0	T4CAP2FINS	tmr4_cap2_pin 输入功能 pin 脚选择. 0x0: 选择 BDC输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03 0x5: 选择 P04 0x6: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11 0xB: 选择 P12 0xC: 选择 P13 0xD: 选择 P14	WO	0x0

	0xE: 选择 P15			
	0xF: 选择 P16			
	0x10: 选择 P17			
	0x11: 选择 P20			
	0x12: 选择 P21			
	0x13: 选择 P22			
	0x14: 选择 P23			
	0x15: 选择 P24		1X70	
	0x16: 选择 P25	No.		
	0x17: 选择 P26			
	0x18: 选择 P27	14/12		
	0x19: 选择 P30			
	0x1A: 选择 P31	.*/		

9.5.121. **FIN_S7**

Addr = 0x175 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	-	-	_	_
4: 0	UORXFINS	uart0_rx 输入功能 pin 脚选择. 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03 0x5: 选择 P04 0x6: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11 0xB: 选择 P12 0xC: 选择 P13	WO	0x0

			1	
	0xD: 选择 P14			
	0xE: 选择 P15			
	0xF: 选择 P16			
	0x10: 选择 P17			
	0x11: 选择 P20			
	0x12: 选择 P21			
	0x13: 选择 P22			
	0x14: 选择 P23		1/1/20	
	0x15: 选择 P24	· ·		
	0x16: 选择 P25			
	0x17: 选择 P26	4/17		
	0x18: 选择 P27	W.		
	0x19: 选择 P30			
	0x1A: 选择 P31	7//		

9.5.122. **FIN_S8**

Addr = 0x176 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	- 1	_	-
		uart1_rx 输入功能 pin 脚选择.		
	, 1	0x0: 选择固定输入低电平		
	\	0x1: 选择 P00		
	X	0x2: 选择 P01		
	145	0x3: 选择 P02		
	-1(2)	0x4: 选择 P03		
4: 0	U1RXFINS	0x5: 选择 P04	WO	0x0
	7"	0x6: 选择 P05		
		0x7: 选择 P06		
		0x8: 选择 P07		
		0x9: 选择 P10		
	OxA:	0xA: 选择 P11		
		0xB: 选择 P12		

		1
0xC: 选择 P13		
0xD: 选择 P14		
0xE: 选择 P15		
0xF: 选择 P16		
0x10: 选择 P17		
0x11: 选择 P20		
0x12: 选择 P21		
0x13: 选择 P22	XI	
0x14: 选择 P23	70	
0x15: 选择 P24		
0x16: 选择 P25	-14/100	
0x17: 选择 P26	14	
0x18: 选择 P27		
0x19: 选择 P30		
0x1A: 选择 P31		

9.5.123. **FIN_S9**

Addr = 0x177 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	_		1	_
7: 5 4: 0	WUCAPFINS	wut_cap_pin 输入功能 pin 脚选择. 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03	WO	- 0x0
		0x5: 选择 P04 0x6: 选择 P05 0x7: 选择 P06 0x8: 选择 P07 0x9: 选择 P10 0xA: 选择 P11		

0xB: 选择 P1	2		
0xC: 选择 P1	3		
0xD: 选择 P1	4		
0xE: 选择 P1	5		
0xF: 选择 P1	6		
0x10: 选择 F	217		
0x11: 选择 F	220		
0x12: 选择 F	221	/X/T.o	
0x13: 选择 F	222		
0x14: 选择 F	223)	
0x15: 选择 F	224		
0x16: 选择 F	25		
0x17: 选择 F	26		
0x18: 选择 F	27		
0x19: 选择 F	230		
0x1A: 选择 F	231		

9.5.124. **FIN_S10**Addr = 0x178 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	-	4/3	_	-
		port_wkup_in0 输入功能 pin 脚选择.		
	, X 5	0x0: 选择固定输入低电平		
	175	0x1: 选择 P00		
	-1(2)	0x2: 选择 P01		
4	*	0x3: 选择 P02		
4: 0	PWKOFINS	0x4: 选择 P03	WO	0x0
		0x5: 选择 P04		
		0x6: 选择 P05		
		0x7: 选择 P06		
		0x8: 选择 P07		
		0x9: 选择 P10		

0xA: 选择 P11	
0xB: 选择 P12	
0xC: 选择 P13	
0xD: 选择 P14	
0xE: 选择 P15	
0xF: 选择 P16	
0x10: 选择 P17	
0x11: 选择 P20	1/2°
0x12: 选择 P21	
0x13: 选择 P22	
0x14: 选择 P23	-4100
0x15: 选择 P24	~~
0x16: 选择 P25	· · · · · · · · · · · · · · · · · · ·
0x17: 选择 P26	
0x18: 选择 P27	áis. T
0x19: 选择 P30	73/7
0x1A: 选择 P31	

9.5.125. **FIN_S11**

Addr = 0x179 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	>	<-		-
	, X(5)	 port_wkup_in1 输入功能 pin 脚选择.		
	175	0x0: 选择固定输入低电平		
	4: 0 PWK1FINS	0x1: 选择 P00		
- X		0x2: 选择 P01		
4: 0		0x3: 选择 P02	WO	0**0
4: 0	LMVILINO	0x4: 选择 P03	WO	0x0
		0x5: 选择 P04		
		0x6: 选择 P05		
		0x7: 选择 P06		
		0x8: 选择 P07		

Ī		r
0x9: 选择 P10		
0xA: 选择 P11		
0xB: 选择 P12		
0xC: 选择 P13		
0xD: 选择 P14		
0xE: 选择 P15		
0xF: 选择 P16		4
0x10: 选择 P17	· · · · · · · · · · · · · · · · · · ·	ΧZ°
0x11: 选择 P20		
0x12: 选择 P21		
0x13: 选择 P22	4/10	
0x14: 选择 P23		
0x15: 选择 P24	.x.	
0x16: 选择 P25		
0x17: 选择 P26	15.	
0x18: 选择 P27		
0x19: 选择 P30		
0x1A: 选择 P31		

9.5.126. **FIN_S12**Addr = 0x17A (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	- 15	_	_	-
	175	port_wkup_in2 输入功能 pin 脚选择.		
	-1(2)	0x0: 选择固定输入低电平		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	*	0x1: 选择 P00		
	7"	0x2: 选择 P01		
4: 0	PWK2FINS	0x3: 选择 P02	WO	0x0
		0x4: 选择 P03		
		0x5: 选择 P04		
		0x6: 选择 P05		
		0x7: 选择 P06		

0x8: 选择 P07		
0x9: 选择 P10		
OxA: 选择 P11		
0xB: 选择 P12		
0xC: 选择 P13		
0xD: 选择 P14		
0xE: 选择 P15		
0xF: 选择 P16	1270	
0x10: 选择 P17	7	
0x11: 选择 P20		
0x12: 选择 P21		
0x13: 选择 P22		
0x14: 选择 P23		
0x15: 选择 P24		
0x16: 选择 P25		
0x17: 选择 P26		
0x18: 选择 P27		
0x19: 选择 P30		
0x1A: 选择 P31		

9.5.127. **FIN_S13**

Addr = 0x17B (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	- 1/5	1		ı
	-1(-)	port_wkup_in3 输入功能 pin 脚选择.		
4	*	0x0: 选择固定输入低电平		
		0x1: 选择 P00	WO	0x0
4: 0		0x2: 选择 P01		
4: 0	L MV9L IN2	0x3: 选择 P02	WO	UXU
		0x4: 选择 P03		
		0x5: 选择 P04		
		0x6: 选择 P05		

0x7: 选择 P06
0x8: 选择 P07
0x9: 选择 P10
0xA: 选择 P11
0xB: 选择 P12
0xC: 选择 P13
0xD: 选择 P14
0xE: 选择 P15
0xF: 选择 P16
0x10: 选择 P17
0x11: 选择 P20
0x12: 选择 P21
0x13: 选择 P22
0x14: 选择 P23
0x15: 选择 P24
0x16: 选择 P25
0x17: 选择 P26
0x18: 选择 P27
0x19: 选择 P30
0x1A: 选择 P31

9.5.128. **FIN_S14**

Addr = 0x17C (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_	ı	_
A)	*	fb_in 输入功能 pin 脚选择.		
	y -	0x0: 选择固定输入低电平		
		0x1: 选择 P00		
4: 0	FBFINS	0x2: 选择 P01	WO	0x0
		0x3: 选择 P02		
		0x4: 选择 P03		
		0x5: 选择 P04		

T T	
	0x6: 选择 P05
	0x7: 选择 P06
	0x8: 选择 P07
	0x9: 选择 P10
	OxA: 选择 P11
	0xB: 选择 P12
	0xC: 选择 P13
	0xD: 选择 P14
	OxE: 选择 P15
	0xF: 选择 P16
	0x10: 选择 P17
	0x11: 选择 P20
	0x12: 选择 P21
	0x13: 选择 P22
	0x14: 选择 P23
	0x15: 选择 P24
	0x16: 选择 P25
	0x17: 选择 P26
	0x18: 选择 P27
	0x19: 选择 P30
	0x1A: 选择 P31

9.5.129. **FIN_S15**

Addr = 0x17D (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	/	-	_	-
4: 0	ADCETRFINS	adc_etr 输入功能 pin 脚选择. 0x0: 选择固定输入低电平 0x1: 选择 P00 0x2: 选择 P01 0x3: 选择 P02 0x4: 选择 P03	WO	0x0

1		
0x5: 选择 P04		
0x6: 选择 P05		
0x7: 选择 P06		
0x8: 选择 P07		
0x9: 选择 P10		
OxA: 选择 P11		
0xB: 选择 P12		
0xC: 选择 P13	1X10	
0xD: 选择 P14		
0xE: 选择 P15)	
0xF: 选择 P16		
0x10: 选择 P17		
0x11: 选择 P20		
0x12: 选择 P21		
0x13: 选择 P22		
0x14: 选择 P23		
0x15: 选择 P24		
0x16: 选择 P25		
0x17: 选择 P26		
0x18: 选择 P27		
0x19: 选择 P30		
0x1A: 选择 P31		

10.SPI 模块

10.1. 功能概述

- ▶ 支持两线模式和三线模式
- > 支持主从半双工收发
- ▶ 极性相位可编程的串行时钟
- ▶ 带MCU中断的传输结束标志
- ▶ 主模式支持高达 12Mbps的通讯速率(F_{osc}=48MHz)

10.2. 模块框图

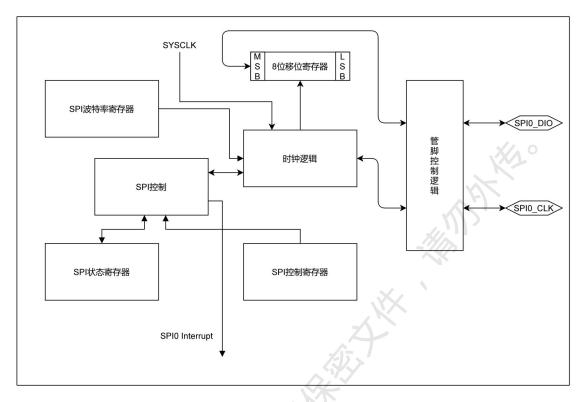


图 10-1 SPI 模块框图

10.3. 寄存器列表

表 10-1 SPIO register list

Address	Register Name	Description
0xB9 (SFR)	SPI_CON	SPI control register
OxC9 (SFR)	SPI_BAUD	SPI baud rate register
0xCB (SFR)	SPI_DATA	SPI data register
OxCA (SFR)	SPI_STA	SPI status register

10.4. 寄存器详细说明

10.4.1. **SPI_CON**

Addr = 0xB9 (SFR)

Bit(s)	Name	Description	R/W	Reset
7	_	_		
		主从机控制位		
6	SPISM	0x0: 主机	RW	0x0
		0x1: 从机		
		发送接收控制位		
5	SPIRXTX	0x0: 发送数据	RW	0x0
		0x1: 接收数据		
		2 线或 3 线选择位		
4	SPI2W3W	0x0: 3 线模式	RW	0x0
		0x1: 2线模式		
		SPI 中断使能位		
3	SPIINTEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		采样模式选择位,1 代表第一个边沿采样,		
2	SPISMPSE1	0 代表第二个边沿采样	RW	0x0
۷		0x0: 第二个边沿采样		
		0x1: 第一个边沿采样		
		时钟线空闲状态选择位		
1	SPIIDST	0x0: CLK 空闲为低电平	RW	0x0
	X	0x1: CLK 空闲为高电平		
	1112	SPI 使能位		
0	SPIEN	0x0: 不使能	RW	0x0
	X_X	0x1: 使能		

10.4.2. **SPI_BAUD**

Addr = 0xC9 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0 BAUD	DAUD	波特率控制寄存器,计算公式:波特率 =	W.O.	
	BAUD	clk/ (2* (BAUD+1))	WO	0x00

10.4.3. **SPI_DATA**

Addr = 0xCB (SFR)

Bit(s)	Name	Description	R/W	Reset
7. 0	7: O DATA	使能后将数据写入 DATA 触发发送,读 DATA	DW	0.00
7: 0		则读出接收到的数据	RW	0x00

10.4.4. **SPI_STA**

Addr = OxCA (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 2	_	- 15		
1	SPIINT	SPI 中断标志,写 1 清零	RC	0x0
		SPI 状态标志位		
0	SPIPENDING	0x0: 正在发送或正在接收	RC	0x0
		0x1: 空闲		

10.5. 使用流程说明

- 1) 主机 TX: 配置 SPI_CON 使能位, SPIRXTX 配 0 表示发送, 将要发送的数据写入 DATA 触发发送。
- 2) 主机 RX: 配置 SPI_CON 使能位, SPIRXTX 配 1 表示接收。写入任意数据到 DATA 触发接收,接收完成(SPIPENDING == 1)读 DATA 读出数据。
- 3) 从机 TX: 配置 SPI_CON 使能位, SPISM 配 1 表示从机模式, SPIRXTX 配 0 表示发送。将要发送的数据写入 DATA 触发 SPI 等待主机时钟。
- 4) 从机 RX: 配置 SPI_CON 使能位,SPISM 配 1 表示从机模式,SPIRXTX 配 1 表示接收。写入任意数据到 DATA 触发 SPI 等待主机时钟。

11.UART0/1 模块

11.1. 功能概述

- ▶ 支持全双工
- ➤ 支持发送 9bit 数据
- > 支持软件奇偶校验
- ➤ UART1 支持 DMA

11.2. 模块框图

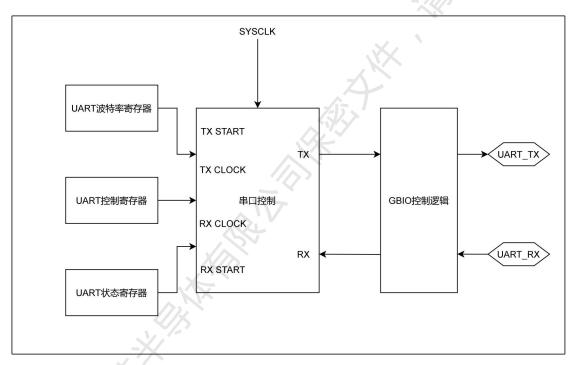


图 11-1 UARTO/1 模块框图

11.3. 寄存器列表

表 11-1 SPIO register list

address	Register Name	Description
0xD2 (SFR)	UARTO_CONO	UARTO control register O
0xD3 (SFR)	UARTO_CON1	UARTO control register 1
0xD4 (SFR)	UARTO_STA	UARTO status register

0xD5 (SFR)	UARTO_BAUDO	The low eight bits of the UARTO baud rate register
0xD6 (SFR)	UARTO_BAUD1	The high eight bits of the UARTO baud rate register
0xD7 (SFR)	UARTO_DATA	UARTO data register
0xF2 (SFR)	UART1_CONO	UART1 control register 0
0xF3 (SFR)	UART1_CON1	UART1 control register 1
0xF4 (SFR)	UART1_STA	UART1 status register
0xF5 (SFR)	UART1_BAUD0	The low eight bits of the UART1 baud rate register
0xF6 (SFR)	UART1_BAUD1	The high eight bits of the UART1 baud rate register
0xF7 (SFR)	UART1_DATA	UART1 data register
0xFD(SFR)	UART1_DMACON	UART1 DMA control register
0xF9 (SFR)	UART1_DMAADRH	UART1 DMA addr high eight register
0xFA (SFR)	UART1_DMAADRL	UART1 DMA addr low eight register
0xFB (SFR)	UART1_DMALEN	UART1 DMA lenght register

11.4. 寄存器详细说明

11.4.1. **UARTO_CONO**

Addr = 0xD2 (SFR)

Bit(s)	Name	Description	R/W	Reset
		停止位控制位		
7	STOPBIT	0x0: 发送 1bit 停止位	RW	0x0
	,-X	0x1: 发送 2bit 停止位		
6	NINTHBIT	将需要发送的第 9bit 数据写入该寄存器	RW	0x1
	1/2	发送 9bit 数据使能位		
5	BIT9EN	0x0: 一次发送 8bit 数据	RW	0x0
	*	0x1: 一次发送 9bit 数据		
	λ,	UART 使能位		
4	UARTEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		TX 电平取反控制位		
3	TXINV	0x0: 不取反	RW	0x0
		0x1: 取反		

2	RXINV	RX 电平取反控制位 0x0: 不取反 0x1: 取反	RW	0x0
1	UARTTXIE	TX 中 断使能 0x0: 不使能 0x1: 使能	RW	0x0
0	UARTRXIE	RX 中断使能位 0x0: 不使能 0x1: 使能	RW	0x0

11.4.2. **UART0_CON1**

Addr = 0xD3 (SFR)

Bit(s)	Name	Description	R/W	Reset
7 : 3	_	-	_	-
		RX 接收到地址标志位中断使能		
2	RXADRIE	0x0: 不使能	RW	0x0
		0x1: 使能		
		帧错误中断使能		
1	FERRIE	0x0: 不使能	RW	0x0
		0x1: 使能		
0	_	1112	_	_

11.4.3. **UARTO_STA**

Addr = 0xD4 (SFR)

Bit(s)	Name	Description	R/W	Reset
7	RXBIT9	接收的第 9bit,读该位读出第 9bit 数据	RO	_
6		帧错误标志位		
	CCDD	0x0: 没有帧错误	D.C.	0.0
	FERR	0x1:接收到错误的停止位	RC	0x0
		写 1 清零		

		RX 状态标志位:		
5	RXDONE	 该位为1表示 buff 接收满数据,写1清零或读 DATA	RC	0x0
		清零		
		TX 状态标志位		
4	TXDONE	0x0: 正在发送数据	RO	0x1
		0x1: 空闲		
3	-	_	XLO	-
2	_	-		-
		RX 状态标志位		
1	ADDRPEND	0x0:接收的是数据	RO	0x0
		0x1:接收的是地址		
0	_	- ×	-	-

11.4.4. **UARTO_BAUDO**

Addr = 0xD5 (SFR)

Bit(s)	Name	Description	R/W	Reset
7. 0	UARTBAUDI.	波特率寄存器低八位,UART 波特率寄存器,计算公	WO	0x0
7: 0	UARTDAUDL	式: sysclk/(baud+1)	WO	UXU

11.4.5. **UARTO_BAUD1**

Addr = 0xD6 (SFR)

Bit(s)	Name	Description	R/W	Reset
7. 0	UARTBAUDH	波特率寄存器高八位,UART 波特率寄存器,计算公	WO	0.0
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	UARIDAUDH	式: sysclk/(baud+1)	WO	0x0

11.4.6. **UARTO_DATA**

Addr = 0xD7 (SFR)

Bit	(s)	Name	Description	R/W	Reset
7:	0	DATA	使能之后向该寄存器写入数据则触发该数据的发	RW	0x0

送,读该寄存器取得接收的数据

11.4.7. **UART1_CON0**

Addr = 0xF2 (SFR)

Bit(s)	Name	Description	R/W	Reset
		停止位控制位:	XLO	
7	STOPBIT	0x0: 发送 1bit 停止位	RW	0x0
		0x1: 发送 2bit 停止位		
6	NINTHBIT	将需要发送的第 9bit 数据写入该寄存器	RW	0x1
		发送 9bit 数据使能位		
5	BIT9EN	0x0: 一次发送 8bit 数据	RW	0x0
		0x1: 一次发送 9bit 数据		
		UART 使能位		
4	UARTEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		TX 电平取反控制位		
3	TXINV	0x0: 不取反	RW	0x0
		0x1: 取反		
		RX 电平取反控制位		
2	RXINV	0x0: 不取反	RW	0x0
		0x1: 取反		
	-%	TX 中断使能		
1	UARTTXIE	0x0: 不使能	RW	0x0
		0x1: 使能		
	12X-15	RX 中断使能位		
0	UARTRXIE	0x0: 不使能	RW	0x0
		0x1: 使能		

11.4.8. **UART1_CON1**

Addr = 0xF3 (SFR)

Bit(s) Na	ame I	Description	R/W	Reset
-----------	-------	-------------	-----	-------

7 : 3	_	-	_	-
		RX 接收到地址标志位中断使能		
2	RXADRIE	0x0: 不使能	RW	0x0
		0x1: 使能		
		帧错误中断使能		
1	FERRIE	0x0: 不使能	RW	0x0
		0x1: 使能	./.	
		DMA 中断使能位	NA.	
0	DMAIE	0x0: 不使能	RW	0x0
		0x1: 使能		

11.4.9. **UART1_STA**

Addr = 0xF4 (SFR)

Bit(s)	Name	Description	R/W	Reset
7	RXBIT9	接收的第 9bit,读该位读出第 9bit 数据	RO	-
6	FERR	帧错误标志位 0x0: 没有帧错误 0x1: 接收到错误的停止位 写 1 清零	RC	0x0
5	RXDONE	RX 状态标志位: 该位为 1 表示 buff 接收满数据,写 1 清零或读 DATA 清零	RC	0x0
4	TXDONE	TX 状态标志位 0x0: 正在发送数据 0x1: 空闲	RO	0x1
3	<u></u>	_	-	-
2	DMAPEND	DMA 状态标志位 0x0: 正在忙 0x1: 空闲	RC	0x0
1	ADDRPEND	RX 状态标志位 0x0:接收的是数据 0x1:接收的是地址	RO	0x0

0	_	-	-	_

11.4.10. **UART1_BAUD0**

Addr = 0xF5 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	IIA DÆDA UDI	波特率寄存器低八位,UART 波特率寄存器,计算公	HI O	0x0
	UARTBAUDL	式: sysclk/(baud+1)	WO	UXU

11.4.11. **UART1_BAUD1**

Addr = 0xF6 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	UARTBAUDH	波特率寄存器高八位,UART 波特率寄存器,计算公式: sysclk/(baud+1)	WO	0x0

11.4.12. **UART1_DATA**

Addr = 0xF7 (SFR)

Bit(s)	Name	Description	R/W	Reset
	DATA	使能之后向该寄存器写入数据则触发该数据的发	DW	0.0
7: 0	DATA	送,读该寄存器取得接收的数据	RW	0x0

11.4.13. **UART1_DMACON**

Addr = 0xFD (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 4	_	_	-	_
3	TXDMAKEY	TXDMA 的使能 KEY	WO	0.40
	I ADWAKÊ Î	使能 TXDMA 时这一位需要同时置 1,否则使能无效	WO	0x0

版权所有 侵权必究 Copyright © 2022 by Taixin Semiconductor All rights reserved

2	RXDMAKEY	RXDMA 的使能 KEY 使能 RXDMA 时这一位需要同时置 1, 否则使能无效	WO	0x0
1	TXDMAEN	TXDMA 使能信号 DMA 完成后硬件自动清零	RW	0x0
0	RXDMAEN	RXDMA 使能信号 DMA 完成后硬件自动清零	RW	0x0

11.4.14. **UART1_DMAADRH**

Addr = 0xF9 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DMAADRH	DMA 地址高八位	RW	0x0

11.4.15. **UART1_DMAADRL**

Addr = OxFA (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DMAADRL	DMA 地址低八位	RW	0x0

11.4.16. **UART1_DMALEN**

Addr = 0xFB (SFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	- ///	_	_	_
4: 0	DMALEN	DMA 长度寄存器	DW	00
	DMALEN	最大支持 31byte	RW	0x0

11.5. 使用流程说明

TX:

使能模块(UARTO->CON |= BIT(4)),将需要发送的数据写入DATA 即开始发送(UARTO->DATA

= X

如需发送 9bit 数据则使能 BIT9_EN 并先将第 9bit 数据写入 NINTHBIT 再将前 8 位数据写入 DATA 开始发送。

RX:

只需使能模块即开始检测起始位,当接收满一帧数据 RX_DONE 会置 1 表示 buff 收满,此时可将接收的数据读走,必需将 RXDONE 写 1 清零才会接收下一帧数据 (UARTO->STA = BIT (5)) 如需使用 DMA 则配置 DMA 控制寄存器使能 DMA,TXDMA 和 RXDMA 不能同时使用。

12.I2C 模块

12.1. 功能概述

- ▶ 支持主机模式和从机模式
- > 支持主机仲裁

12.2. 功能描述

在 I2C 协议定义中,有四种工作模式: 主机发送、主机接收、从机发送、从机接收。还有广播模式,其工作方式类似于主机发送。

注意: 对 I2C_STA 的值的描述 (如 08H, f8H 等) 都是默认寄存器低 3 位为 0 的, 也就是说描述的是 I2C_STA[7: 3] 左移 3 位的值。

12.2.1. 主机发送

主机发送模式下,主机应该提供时钟,可通过设置 STA(I2C_CON[5])寄存器为1来进入主机模式。当模块检测到总线处于空闲时,将发送一个起始位。当起始位被成功发送(时钟保持高电平,数据线拉低),SI 寄存器将被置1并且状态码(I2C_STA)被设为08H。软件此时应该将从机地址和写命令(SLA+W)写入I2C_DATA。接下来SI 位应该由软件清零,触发SLA+W的发送。

当 SLA+W 被成功发送并且从设备返回一个 ACK 之后, SI 会被再次置位, I2C_STA 此时是 18H。此时根据需要来进行下一步操作。

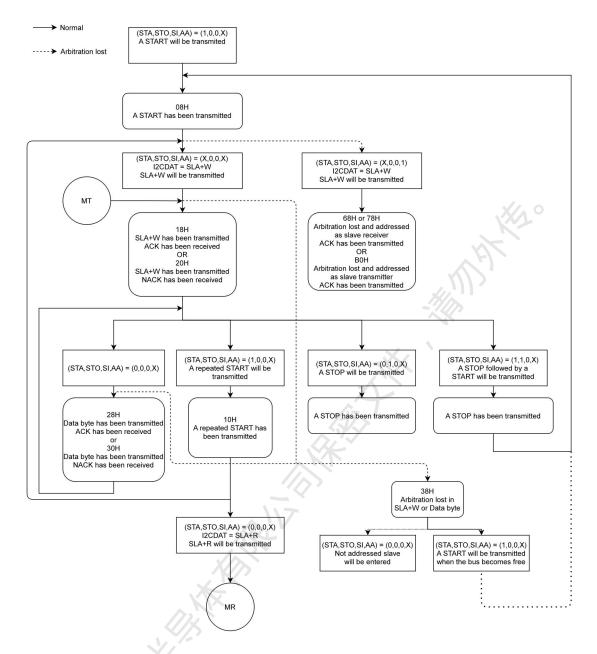


图 12-1 主机发送流程图

12.2.2. 主机接收

在主机接收模式下,起始位的发送和主机发送模式一样,不同的是写入 I2C_DATA 的数据变为(SLA+R),发送成功并接收到 ACK 后 SI 会被置位,此时 I2C_STA 值为 40H.

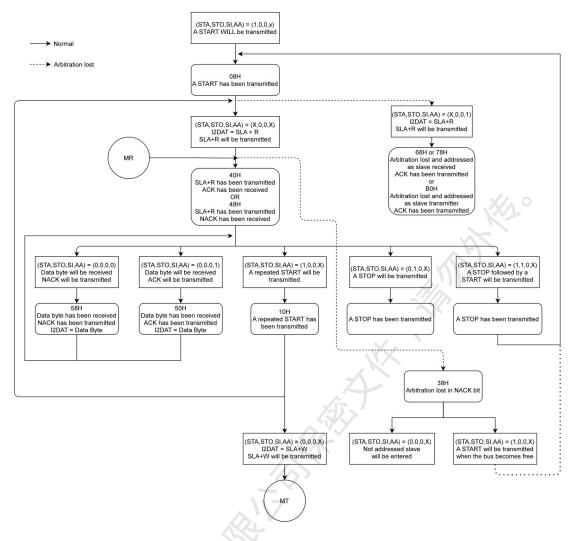


图 12-2 主机接收流程图

12.2.3. 从机接收

在从机接收模式下,传输开始之前应先将需设置的本模块从机地址写入 I2C_ADR, AA 寄存器应被置 1, 被置 1 后模块才会在接收到本机地址后回应 ACK。

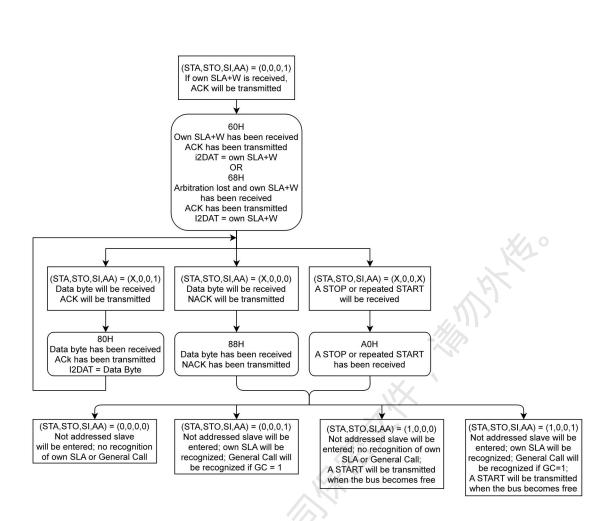


图 12-3 主机接收流程图

12.2.4. 从机发送

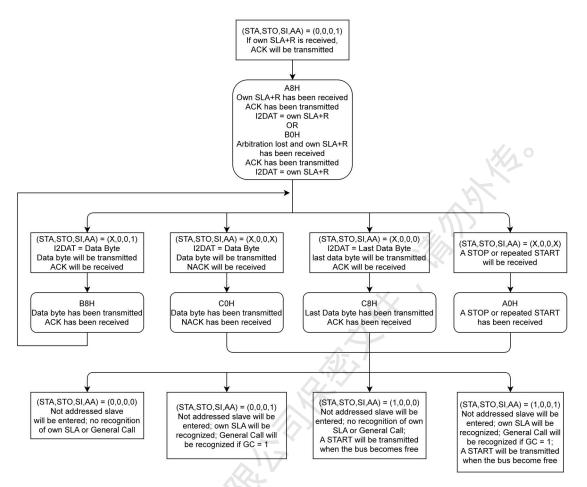


图 12-4 从机发送流程图

12.2.5. 广播模式

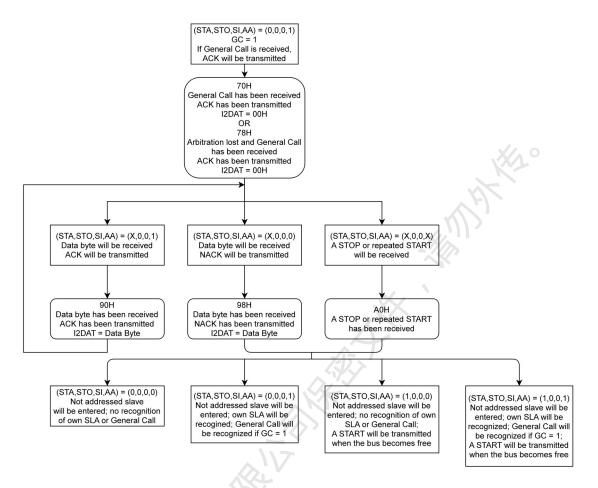


图 12-5 广播模式流程图

12.3. 寄存器列表

表 12-1 SPIO register list

address	Register Name	Description
0xCC (SFR)	I2C_CON	I2C control register
OxCD (SFR)	I2C_DATA	I2C data register
OxCE (SFR)	I2C_ADR	I2C address register
0xCF (SFR)	I2C_STA	I2C status register

12.4. 寄存器详细说明

12.4.1. **I2C_CON**

Addr = 0xCC (SFR)

Bit(s)	Name	Description	R/W	Reset
		iic 使能位	X,T.o.	
7	DMC1	0x0: "sdao"和"sclo"输出1,并忽略"sdai"和	DW	0.0
	ENS1	"scli"输入	RW	0x0
		0x1: 使能 iic 模块		
		起始位		
G	CTA	0x0: 无操作	DW	00
6	STA	0x1: 检查 iic 总线,如果总线处于空闲状态,并且模	RW	0x0
		块处于主机模式,则发送一个起始位		
		停止位		
5	STO	0x0: 无操作	RW	0x0
		0x1: 当模块处于主机模式,则发送一个停止位		
4	SICLR	SI清除位,写1清除 SI,读恒为0	WO	0x0
3		应答控制位		
	AA	0x0: 当出现以下情况时发送 NACK		
		➤ 在主机接收模式下接收完 1byte		
		➤ 在从机接收模式下接收完 1byte		
		0x1: 当出现以下情况时发送 ACK	RW	0x0
		▶ 接收到本机从机地址		
		➤ 在广播地址位使能的情况下接收到广播地址		
		➤ 主机接收情况下接收到 1byte		
	XIV	从机接收情况下接收到 1byte		
	CR	波特率控制位		
		I2C 波特率由以下公式计算得出: baud(kHz)=		
2 : 0		sysclk/x, 其中 x 的值由 CR 寄存器决定,分别是:	RW	0x0
2: 0		0x00: 256	11.11	UAU
		0x01: 224		
		0x02: 160		

	0x03: 80	
	0x04: 1024	
	0x05: 120	
	0x06: 60	
	0x07: 当 CR 设置为 0x07 时,波特率由 Timer0 的 pwm	
	频率决定,计算方法为 TimerO 的 pwm 频率除以 8	

12.4.2. **I2C_STA**

Addr = OxCD (SFR)

Bit(s)	Name	Description	R/W	Reset
7 : 3	STA	模块状态标志位	RO	0x8
2	SI	除了 f8H 状态之外的所有状态都会将 SI 置位,SI_CLR 写 1 和读 DATA 都会清除 SI	RO	0x0
1	INT	中断标志位,当使能了中断后,随 SI 置位	RC	0x0
0	INTEN	中断使能位	RW	0x0

注意: 对 I2C_STA 的值的描述(如 08H, f8H 等)都是默认寄存器低 3 位为 0 的, 也就是说描述的是 I2C_STA[7: 3] 左移 3 位的值

12.4.3. **I2C_ADR**

Addr = 0xCE (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 1	ADR	本模块从机地址	RW	0x0
	1/4	广播地址控制位		
0	GC	0x0: 忽略广播地址	RW	0x0
	, XEV	0x1: 响应广播地址		

12.4.4. **I2C_DATA**

Addr = 0xCF (SFR)

Bit(s) Name Description R/W Reset

7: 0 DAT 数据寄存器 RW 0x0

13.Simple Timer 模块

13.1. 功能概述

Simple Timer 模块是由 Timer 0、Timer 1、Timer 2、Timer 3 以及一个 Wake Up Timer 五个 16 位的基础功能定时器以及一个 8 位的 Buzzer 组成。除了 Buzzer 之外,其他 5 个 Timer 均支持多种计数源选择,支持多种工作模式: 计数器模式、捕获模式和 PWM 模式等。

Simple Timer 模块均带有 8 位分频器,且计数模式均为递增计数,当计数器值等于设置的周期值时,计数器从零开始重新计数。16 位定时器,带有 1 级捕获功能,能将捕获值存入比较值寄存器中。

计数源选择:

- 1) 32K 低速 RC (LIRC)
- 2) 八分频高速 RC (HIRC)
- 3) 二分频 XOSC
- 4) 外部 GPIO 输入
- 5) 系统时钟

13.1.1. Timer0-3

13.1.1.1. 特殊计数源

Timer0 和 Timer1 可以与 Super Timer 模块中的 Stmr0 同步计数。通过配置 Super Timer 的 STMR_CNTTYPE[7: 6]和 STMR_CNTEN[7: 6]可以使能 Timer0 和 Timer1 与 Stmr0 进行同步计数,即 Stmr0 计数器加 1, Timer0 和 Timer1 计数器加 1。

将 I0_MAP[7]置 1,可以使能 Timer0 计数源为 Stmr0 比较值 C 点等于计数值,即每一次 Stmr0 计数值等于比较值 C 时, Timer0 计数器加 1。

Timer0 计数值等于周期可以作为 Timer1 计数源。

Timer1 计数值等于周期可以作为 Timer2 计数源。

Timer2 计数值等于周期可以作为 Timer3 计数源。

Timer3 计数值等于周期可以作为 Wake Up Timer 计数源。

13.1.1.2. 影子寄存器

Timer0 和 Timer1 比较值寄存器拥有影子寄存器,在 PWM 模式下,计数器值等于周期值时可以将影子寄存器的值加载到比较值寄存器中。当比较值寄存器写入值时,同时也会将该值写入影子寄存器。当影子寄存器写入值时,不影响比较值寄存器。

Timer2、Timer3 比较值寄存器没有影子寄存器。

13.1.1.3. 计数器清零

通过寄存器 TMR_ALLCON[3: 0]写 1 可以清零 Timer0-Timer3 计数

13.1.2. Wake Up Timer

Wake Up Timer 和 Timerx(x 表示 0-3)功能一样,可以作为正常的 PWM 输出,支持 1 级捕获模式。通过寄存器 TMR_ALLCON[5]写 1 可以清零计数。其中断可以作为芯片休眠模式下的唤醒源之一,即当芯片休眠时,计数器中断有效可唤醒芯片开始工作。

13.1.3. **Buzzer**

Buzzer 是一个八位计数器,支持计数模式和 PWM 模式。PWM 模式占空比为 50%。计数 pending 和 PWM 输出二选一。

13.2. 模块框图

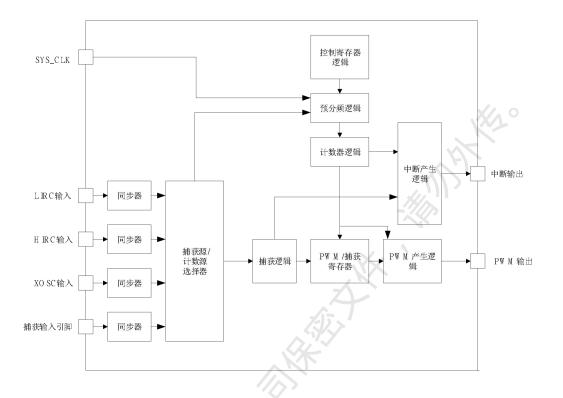


图 13-1 Simple Timer 模块框图

13.3. 寄存器列表

表 13-1 TimerO/1 register list

address	Register Name	Description
0x090 (XSFR)	TMRO_CONL	TIMERO Control Low Register
0x091 (XSFR)	TMRO_CONH	TIMERO Control High Register
0x092 (XSFR)	TMRO_CNTL	TIMERO Counter Low Register
0x093 (XSFR)	TMRO_CNTH	TIMERO Counter High Register
0x094 (XSFR)	TMRO_PRL	TIMERO Period Low Register

0x095 (XSFR)	TMRO_PRH	TIMERO Period High Register
0x096 (XSFR)	TMRO_PWML	TIMERO PWM Low Register
0x097 (XSFR)	TMRO_PWMH	TIMERO PWM High Register
0x09a (XSFR)	TMRO_PWML1	TIMERO PWM Low Shadow Register
0x09b (XSFR)	TMRO_PWMH1	TIMERO PWM High Shadow Register
0x09c (XSFR)	TMR1_CONL	TIMER1 Control Low Register
0x09d (XSFR)	TMR1_CONH	TIMER1 Control High Register
0x09e (XSFR)	TMR1_CNTL	TIMER1 Counter Low Register
0x09f (XSFR)	TMR1_CNTH	TIMER1 Counter High Register
0x0a0 (XSFR)	TMR1_PRL	TIMER1 Period Low Register
0x0a1 (XSFR)	TMR1_PRH	TIMER1 Period High Register
0x0a2 (XSFR)	TMR1_PWML	TIMER1 PWM Low Register
0x0a3 (XSFR)	TMR1_PWMH	TIMER1 PWM High Register
0x0a6 (XSFR)	TMR1_PWML1	TIMER1 PWM Low Shadow Register
0x0a7 (XSFR)	TMR1_PWMH1	TIMER1 PWM High Shadow Register
0x100 (XSFR)	TMR2_CONL	TIMER2 Control Low Register
0x101 (XSFR)	TMR2_CONH	TIMER2 Control High Register
0x102 (XSFR)	TMR2_CNTL	TIMER2 Counter Low Register
0x103 (XSFR)	TMR2_CNTH	TIMER2 Counter High Register
0x104 (XSFR)	TMR2_PRL	TIMER2 Period Low Register
0x105 (XSFR)	TMR2_PRH	TIMER2 Period High Register
0x106 (XSFR)	TMR2_PWML	TIMER2 PWM Low Register
0x107 (XSFR)	TMR2_PWMH	TIMER2 PWM High Register
0x108 (XSFR)	TMR3_CONL	TIMER3 Control Low Register

0x109 (XSFR)	TMR3_CONH	TIMER3 Control High Register
0x10a (XSFR)	TMR3_CNTL	TIMER3 Counter Low Register
0x10b (XSFR)	TMR3_CNTH	TIMER3 Counter High Register
0x10c (XSFR)	TMR3_PRL	TIMER3 Period Low Register
0x10d (XSFR)	TMR3_PRH	TIMER3 Period High Register
0x10e (XSFR)	TMR3_PWML	TIMER3 PWM Low Register
0x10f (XSFR)	TMR3_PWMH	TIMER3 PWM High Register
0x152 (XSFR)	WUT_CONL	Wake Up Timer Control Low Register
0x153 (XSFR)	WUT_CONH	Wake Up Timer Control High Register
0x154 (XSFR)	WUT_CNTL	Wake Up Timer Counter Low Register
0x155 (XSFR)	WUT_CNTH	Wake Up Timer Counter High Register
0x156 (XSFR)	WUT_PRL	Wake Up Timer Period Low Register
0x157 (XSFR)	WUT_PRH	Wake Up Timer Period High Register
0x158 (XSFR)	WUT_PWML	Wake Up Timer PWM Low Register
0x159 (XSFR)	WUT_PWMH	Wake Up Timer PWM High Register
0x164 (XSFR)	BUZ_CON	Buzzer Control Register
0x165 (XSFR)	BUZ_DIV	Buzzer Period Register

13.4. 寄存器详细说明

13.4.1. **TMR0_CONL**

Addr = 0x090 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	SOURCESEL	计数源选择	RW	0x0
		0x0:选择GPIO(CAP PIN)上升沿作为计数源;		

	1			
		0x1:选择GPIO(CAP PIN)下降沿作为计数源;		
		0x2: 选择 HIRC 上升沿和下降沿作为计数源;		
		0x3: 选择 LIRC 上升沿和下降沿作为计数源;		
		0x4: 选择 XOSC 上升沿和下降沿作为计数源;		
		0x5: 无计数源;		
		0x6: 选择系统时钟作为计数源;		
		0x7: 选择系统时钟作为计数源;		
		TIMER 预分频配置.	X7°	
		0x0: 1/1		
4: 2		0x1: 1/2		
	PSC	0x2: 1/4		
		0x3: 1/8	RW	0x0
		0x4: 1/16		
		0x5: 1/32		
		0x6: 1/64		
		0x7: 1/128		
		模式选择及计数使能		
1: 0		0x0: 不使能计数		
	TMRMODE	0x1: 计数器模式	DW	0.0
		0x2: PWM 模式	RW	0x0
		0x3: 捕获模式		
		Note: 非零使能计数,其他使能方式见功能概述		

13.4.2. TMR0_CONH

Addr = 0x091 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	*	TIMER 计数 pending 位(写 1 清 pending)		
7	TMRPND	0x0: 没有发生计数等于周期,或已清零	RW	0x0
		0x1: 发生过计数等于周期		
		TIMER 捕获 pending 位(写 1 清 pending)		
6	CAPPND	0x0: 没有发生捕获事件	RW	0x0
		0x1: 有发生捕获事件		

5	TMRIE	TIMER 计数中断使能位 0x0: 不使能计数中断 0x1: 使能计数中断, 计数等于周期时允许发生中断	RW	0x0
4	CAPIE	TIMER 捕获中断使能位 0x0: 不使能捕获中断 0x1: 使能捕获中断,发生捕获事件时允许发生中断	RW	0x0
3: 2	CAPSRC	TIMER 捕获源选择配置. 0x0: 引脚作为捕获源 0x1: 引脚作为捕获源 0x2: 比较器 0 的数字输出作为捕获源 0x3: 比较器 1 的数字输出作为捕获源	RW	0x0
1: 0	CAPEDGESEL	TIMER 捕获引脚的边沿触发设置. 0x0: 上升沿触发捕获 0x1: 下降沿触发捕获 0x2: 双边沿触发捕获 0x3: 双边沿触发捕获	RW	0x0

13.4.3. **TMR0_CNTL**

Addr = 0x092 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNTL	TIMERO 计数器低八位	RW	1

13.4.4. TMR0_CNTH

Addr = 0x093 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNTH	TIMERO 计数器高八位	RW	_

13.4.5. **TMR0_PRL**

Addr = 0x094 (XSFR)

Bit(s) Name Description R/W Res

7: 0 PI	RDL T	TIMERO 计数周期低八位	RW	-
---------	-------	----------------	----	---

13.4.6. TMR0_PRH

Addr = 0x095 (XSFR)

ĺ	Bit(s)	Name	Description	R/W	Reset
	7: 0	PRDH	TIMERO 计数周期高八位	RW	_

13.4.7. **TMR0_PWML**

Addr = 0x096 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		TIMERO 占空比低八位		
7: 0	DWMI	PWM 工作模式时,该值是 PWM 的占空比设置值;捕获	DW	
	PWML	工作模式时,当捕获到捕获源之后抓取的计数器低	RW	_
		八位的值锁存在此寄存器中。		

13.4.8. **TMR0_PWMH**

Addr = 0x097 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	V	TIMERO 占空比高八位		
7 0	DWMII	PWM 工作模式时,该值是 PWM 的占空比设置值;捕	DW	
7: 0	PWMH	获工作模式时,当捕获到捕获源之后抓取的计数器	RW	_
	175	高八位的值锁存在此寄存器中。		

13.4.9. **TMR0_PWML1**

Addr = 0x09A (XSFR)

	Bit(s)	Name	Description	R/W	Reset
	7	DUMI 1	TIMERO 占空比影子寄存器低八位	DW	Reset -
l	7: 0	PWML1	PWM 工作模式时,当计数器值等于周期值时,将加	RW	_

版权所有 侵权必究 Copyright © 2022 by Taixin Semiconductor All rights reserved 载此寄存器中的值到占空比寄存器 PWML。

13.4.10. **TMR0_PWMH1**

Addr = 0x09B (XSFR)

Bit(s)	Name	Description	R/W	Reset
		TIMERO 占空比影子寄存器高八位	X/\ o	
7: 0	PWMH1	PWM 工作模式时,当计数器值等于周期值时,将加	RW	-
		载此寄存器中的值到占空比寄存器 PWMH。		

13.4.11. **TMR1_CONL**

Addr = 0x09C (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	SOURCESEL	计数源选择 0x0: 选择 GPIO (CAP PIN) 上升沿作为计数源; 0x1: 选择 GPIO (CAP PIN) 下降沿作为计数源; 0x2: 选择 HIRC 上升沿和下降沿作为计数源; 0x3: 选择 LIRC 上升沿和下降沿作为计数源; 0x4: 选择 XOSC 上升沿和下降沿作为计数源; 0x5: Timer0 计数 CNT 等于周期作为计数源; 0x6: 选择系统时钟作为计数源;	RW	0x0
4: 2	PSC	TIMER 预分频配置. 0x0: 1/1 0x1: 1/2 0x2: 1/4 0x3: 1/8 0x4: 1/16 0x5: 1/32 0x6: 1/64 0x7: 1/128	RW	0x0
1: 0	TMRMODE	模式选择及计数使能	RW	0x0

	0x0: 不使能计数	
	0x1: 计数器模式	
	0x2: PWM 模式	
	0x3: 捕获模式	
	Note: 非零使能计数,其他使能方式见功能概述	

13.4.12. TMR1_CONH

Addr = OxO9D (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	TMRPND	TIMER 计数 pending 位 (写 1 清 pending) 0x0: 没有发生计数等于周期,或已清零 0x1: 发生过计数等于周期	RW	0x0
6	CAPPND	TIMER 捕获 pending 位 (写 1 清 pending) 0x0: 没有发生捕获事件 0x1: 有发生捕获事件	RW	0x0
5	TMRIE	TIMER 计数中断使能位 0x0: 不使能计数中断 0x1: 使能计数中断, 计数等于周期时允许发生中断	RW	0x0
4	CAPIE	TIMER 捕获中断使能位 0x0: 不使能捕获中断 0x1: 使能捕获中断,发生捕获事件时允许发生中断	RW	0x0
3: 2	CAPSRC	TIMER 捕获源选择配置. 0x0: 引脚作为捕获源 0x1: 引脚作为捕获源 0x2: 比较器 0 的数字输出作为捕获源 0x3: 比较器 1 的数字输出作为捕获源	RW	0x0
1: 0	CAPEDGESEL	TIMER 捕获引脚的边沿触发设置. 0x0: 上升沿触发捕获 0x1: 下降沿触发捕获 0x2: 双边沿触发捕获	RW	0x0

		1 !	
0x3:	双边沿触发捕获		

13.4.13. **TMR1_CNTL**

Addr = 0x09E (XSFR)

I	Bit(s)	Name	Description	R/W	Reset
I	7 : 0	CNTL	TIMER1 计数器低八位	RW	ı

13.4.14. TMR1_CNTH

Addr = 0x09F (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNTH	TIMER1 计数器高八位	RW	-

13.4.15. **TMR1_PRL**

Addr = 0x0A0 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	PRDL	TIMER1 计数周期低八位	RW	_

13.4.16. **TMR1_PRH**

Addr = 0x0A1 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	PRDH	TIMER1 计数周期高八位	RW	-

13.4.17. **TMR1_PWML**

Addr = 0x0A2 (XSFR)

ĺ	Bit(s)	Name	Description	R/W	Reset
	7: 0	PWML	TIMER1 占空比低八位	RW	-

PWM 工作模式时,该值是 PWM 的占空比设置值;捕获	
工作模式时,当捕获到捕获源之后抓取的计数器低	
八位的值锁存在此寄存器中。	

13.4.18. **TMR1_PWMH**

Addr = 0x0A3 (XSFR)

	2 0110110 (110111)		X/, 0	
Bit(s)	Name	Description	R/W	Reset
	PWMH^///	TIMER1 占空比高八位	DW	
7. 0		PWM 工作模式时,该值是 PWM 的占空比设置值;捕		_
7: 0		获工作模式时,当捕获到捕获源之后抓取的计数器	RW	
		高八位的值锁存在此寄存器中。		

13.4.19. **TMR1_PWML1**

Addr = 0x0A6 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	PWML1	TIMER1 占空比影子寄存器低八位		
		PWM 工作模式时,当计数器值等于周期值时,将加载	RW	-
		此寄存器中的值到占空比寄存器 PWML。		

13.4.20. TMR1_PWMH1

Addr = 0x0A7 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	-1(2)	TIMER1 占空比影子寄存器高八位		
7: 0	PWMH1	PWM 工作模式时,当计数器值等于周期值时,将加载	RW	-
	7	此寄存器中的值到占空比寄存器 PWMH。		

13.4.21. TMR2_CONL

Addr = 0x100 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		计数源选择		
		0x0:选择GPIO(CAP PIN)上升沿作为计数源;		
		0x1:选择GPIO(CAP PIN)下降沿作为计数源;		
		0x2:选择 HIRC 上升沿和下降沿作为计数源;		
7 : 5	SOURCESEL	0x3:选择LIRC上升沿和下降沿作为计数源;	RW	0x0
		0x4: 选择 XOSC 上升沿和下降沿作为计数源;	X/1°	
		0x5: Timer1 计数 CNT 等于周期作为计数源;		
		0x6: 选择系统时钟作为计数源;		
		0x7: 选择系统时钟作为计数源;		
		TIMER 预分频配置.		
		0x0: 1/1		
		0x1: 1/2		
		0x2: 1/4		
4: 2	PSC	0x3: 1/8	RW	0x0
		0x4: 1/16		
		0x5: 1/32		
		0x6: 1/64		
		0x7: 1/128		
		模式选择及计数使能		
		0x0: 不使能计数		
1: 0	TMRMODE	0x1: 计数器模式	RW	0x0
	J.	0x2: PWM 模式		
	\	0x3: 捕获模式		

13.4.22. **TMR2_CONH**

Addr = 0x101 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		TIMER 计数 pending 位(写 1 清 pending)		
7	TMRPND	0x0: 没有发生计数等于周期,或已清零	RW	0x0
		0x1: 发生过计数等于周期		
6	CAPPND	TIMER 捕获 pending 位(写 1 清 pending)	RW	0x0

		0x0: 没有发生捕获事件		
		0x1: 有发生捕获事件		
		TIMER 计数中断使能位		
5	TMRIE	0x0: 不使能计数中断	RW	0x0
		0x1: 使能计数中断, 计数等于周期时允许发生中断		
		TIMER 捕获中断使能位		
4	CAPIE	0x0: 不使能捕获中断	RW	0x0
		0x1: 使能捕获中断,发生捕获事件时允许发生中断	SOT.	
		TIMER 捕获源选择配置.		
		0x0: 引脚作为捕获源		
3 : 2	CAPSRC	0x1: 引脚作为捕获源	RW	0x0
		0x2: 比较器 0 的数字输出作为捕获源		
		0x3: 比较器 1 的数字输出作为捕获源		
		TIMER 捕获引脚的边沿触发设置.		
		0x0: 上升沿触发捕获		
1: 0	CAPEDGESEL	0x1: 下降沿触发捕获	RW	0x0
		0x2: 双边沿触发捕获		
		0x3: 双边沿触发捕获		

13.4.23. TMR2_CNTL Addr = 0x102 (XSFR)

Bit(s)	Name	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Description	R/W	Reset
7: 0	CNTL	\X	TIMER2 计数器低八位	RW	-

13.4.24. TMR2_CNTH

Addr = 0x103 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNTH	TIMER2 计数器高八位	RW	-

13.4.25. **TMR2_PRL**

Addr = 0x104 (XSFR)

Bit(s) Name	Description	R/W	Reset
7: 0	PRDL	TIMER2 计数周期低八位	RW	_

13.4.26. **TMR2_PRH**

Addr = 0x105 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	PRDH	TIMER2 计数周期高八位	RW	-

13.4.27. **TMR2_PWML**

Addr = 0x106 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		TIMER2 占空比低八位		
7 0	DUMI	PWM 工作模式时,该值是 PWM 的占空比设置值;捕获	DW	_
7: 0	PWML	工作模式时,当捕获到捕获源之后抓取的计数器低八	RW	_
		位的值锁存在此寄存器中。		

13.4.28. TMR2_PWMH

Addr = 0x107 (XSFR)

Bit(s)	Name	Description	R/W	Reset
A)	**	TIMER2 占空比高八位		
- 0	DIMI	PWM 工作模式时,该值是 PWM 的占空比设置值;捕获	DW	
7: 0	PWMH	工作模式时,当捕获到捕获源之后抓取的计数器高八	RW	_
		位的值锁存在此寄存器中。		

13.4.29. **TMR3_CONL**

Addr = 0x108 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		计数源选择		
		0x0:选择GPIO(CAP PIN)上升沿作为计数源;		
		0x1:选择 GPIO (CAP PIN) 下降沿作为计数源;	X1°	
		0x2: 选择 HIRC 上升沿和下降沿作为计数源;		
7: 5	SOURCESEL	0x3: 选择 LIRC 上升沿和下降沿作为计数源;	RW	0x0
		0x4:选择 XOSC 上升沿和下降沿作为计数源;		
		0x5: Timer2 计数 CNT 等于周期作为计数源;		
		0x6: 选择系统时钟作为计数源;		
		0x7: 选择系统时钟作为计数源;		
		TIMER 预分频配置.		
		0x0: 1/1		
		0x1: 1/2		
		0x2: 1/4		
4: 2	PSC	0x3: 1/8	RW	0x0
		0x4: 1/16		
		0x5: 1/32		
		0x6: 1/64		
		0x7: 1/128		
	7	模式选择及计数使能		
	7-7	0x0: 不使能计数		
1: 0	TMRMODE	0x1: 计数器模式	RW	0x0
	17.75	0x2: PWM 模式		
4	-1X-X	0x3: 捕获模式		

13.4.30. TMR3_CONH

Addr = 0x109 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	TMRPND	TIMER 计数 pending 位(写 1 清 pending)	RW	0x0

ı			
	0x0: 没有发生计数等于周期,或已清零		
	0x1: 发生过计数等于周期		
	TIMER 捕获 pending 位(写 1 清 pending)		
CAPPND	0x0: 没有发生捕获事件	RW	0x0
	0x1: 有发生捕获事件		
	TIMER 计数中断使能位		
TMRIE	0x0: 不使能计数中断	RW	0x0
	0x1: 使能计数中断,计数等于周期时允许发生中断	XV.	
	TIMER 捕获中断使能位		
CAPIE	0x0: 不使能捕获中断	RW	0x0
	0x1: 使能捕获中断,发生捕获事件时允许发生中断		
	TIMER 捕获源选择配置.		
	0x0: 引脚作为捕获源		
CAPSRC	0x1: 引脚作为捕获源	RW	0x0
	0x2: 比较器 0 的数字输出作为捕获源		
	0x3: 比较器 1 的数字输出作为捕获源		
	TIMER 捕获引脚的边沿触发设置.		
	0x0: 上升沿触发捕获		
CAPEDGESEL	0x1: 下降沿触发捕获	RW	0x0
	0x2: 双边沿触发捕获		
	0x3: 双边沿触发捕获		
	CAPIE CAPSRC	Ox1: 发生过计数等于周期	Ox1: 发生过计数等于周期 TIMER 捕获 pending 位 (写 1 清 pending) Ox0: 没有发生捕获事件 RW Ox1: 有发生捕获事件 RW TIMER 计数中断使能位 Ox0: 不使能计数中断, 计数等于周期时允许发生中断 TIMER 捕获中断使能位 Ox0: 不使能捕获中断 RW Ox1: 使能捕获中断, 发生捕获事件时允许发生中断 TIMER 捕获源选择配置. Ox0: 引脚作为捕获源 RW Ox2: 比较器 0 的数字输出作为捕获源 RW TIMER 捕获引脚的边沿触发设置. Ox0: 上升沿触发捕获 Ox0: 上升沿触发捕获 CAPEDGESEL Ox1: 下降沿触发捕获 Ox2: 双边沿触发捕获 RW

13.4.31. TMR3_CNTL

Addr = 0x10A (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNTL	TIMER3 计数器低八位	RW	-

13.4.32. TMR3_CNTH

Addr = 0x10B (XSFR)

Ī	Bit(s)	Name	Description	R/W	Reset
	7 : 0	CNTH	TIMER3 计数器高八位	RW	-

13.4.33. **TMR3_PRL**

Addr = 0x10C (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	PRDL	TIMER3 计数周期低八位	RW	-

13.4.34. **TMR3_PRH**

Addr = Ox10D (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	PRDH	TIMER3 计数周期高八位	RW	_

13.4.35. TMR3_PWML

Addr = 0x10E (XSFR)

Bit(s)	Name	Description	R/W	Reset
		TIMER3 占空比低八位		-
7. 0	DWM	PWM 工作模式时,该值是 PWM 的占空比设置值;捕获	RW	
7: 0	PWML 工作模式时,当捕获到捕获》 位的值锁存在此寄存器中。	工作模式时,当捕获到捕获源之后抓取的计数器低八		
		位的值锁存在此寄存器中。		

13.4.36. **TMR3_PWMH**

Addr = 0x10F (XSFR)

Bit(s)	Name	Description	R/W	Reset
	PWM : 工作	TIMER3 占空比高八位		
		PWM 工作模式时,该值是 PWM 的占空比设置值;捕获	RW	
7: 0		工作模式时,当捕获到捕获源之后抓取的计数器高八		_
		位的值锁存在此寄存器中。		

13.4.37. **WUT_CONL**

Addr = 0x152 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		时钟源及计数源选择		
		0x0:选择 GPIO (CAP PIN) 作为时钟源;		
		选择上升沿作为计数源;	XLO	
		0x1:选择 GPIO (CAP PIN) 作为时钟源;		
		选择下降沿作为计数源;		
		0x2: 选择 HIRC 作为时钟源;		
7	SOURCESEL	选择上升沿和下降沿作为计数源;	DW	00
7: 5	SOURCESEL	0x3: 选择 LIRC 作为时钟源;	RW	0x0
		选择上升沿和下降沿作为计数源;		
		0x4: 选择 XOSC 作为时钟源;		
		选择上升沿和下降沿作为计数源;		
		0x5: timer3 计数 CNT 等于周期作为计数源;		
		0x6: 选择系统时钟作为计数源;		
		0x7: 选择系统时钟作为计数源;		
		TIMER 预分频配置.		
		0x0: 1/1		
		0x1: 1/2		
		0x2: 1/4		
4: 2	PSC	0x3: 1/8	RW	0x0
	x-7	0x4: 1/16		
		0x5: 1/32		
	175	0x6: 1/64		
4	-1(2)	0x7: 1/128		
4)	济	模式选择及计数使能		
		0x0: 不使能计数		
1: 0	TMRMODE	0x1: 计数器模式	RW	0x0
		0x2: PWM 模式		
		0x3: 捕获模式		

13.4.38. **WUT_CONH**

Addr = 0x153 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		TIMER 计数 pending 位(写 1 清 pending)		
7	TMRPND	0x0: 没有发生计数等于周期,或已清零	RW	0x0
		0x1: 发生过计数等于周期	XZO	
		TIMER 捕获 pending 位(写 1 清 pending)		
6	CAPPND	0x0: 没有发生捕获事件	RW	0x0
		0x1: 有发生捕获事件		
		TIMER 计数中断使能位		
5	TMRIE	0x0: 不使能计数中断	RW	0x0
		0x1: 使能计数中断, 计数等于周期时允许发生中断		
		TIMER 捕获中断使能位		
4	CAPIE	0x0: 不使能捕获中断	RW	0x0
		0x1: 使能捕获中断,发生捕获事件时允许发生中断		
		TIMER 捕获源选择配置.		
		0x0: 引脚作为捕获源		
3: 2	CAPSRC	0x1: 引脚作为捕获源	RW	0x0
		0x2: 比较器 0 的数字输出作为捕获源		
		0x3: 比较器 1 的数字输出作为捕获源		
		TIMER 捕获引脚的边沿触发设置.		
	- 1/2	0x0: 上升沿触发捕获		
1: 0	CAPEDGESEL	0x1: 下降沿触发捕获	RW	0x0
	1/2/37	0x2: 双边沿触发捕获		
	12.75	0x3: 双边沿触发捕获		

13.4.39. **WUT_CNTL**

Addr = 0x154 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNTL	TIMER 计数器低八位	RW	_

13.4.40. **WUT_CNTH**

Addr = 0x155 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNTH	TIMER 计数器高八位	RW	-

13.4.41. **WUT_PRL**

Addr = 0x156 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	PRDL	TIMER 计数周期低八位	RW	-

13.4.42. **WUT_PRH**

Addr = 0x157 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 0	PRDH	TIMER 计数周期高八位	RW	_

13.4.43. **WUT_PWML**

Addr = 0x158 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	, 15	TIMER 占空比低八位		
7 0	DWMI	PWM 工作模式在,该值是 PWM 的占空比设置值;捕获	DW	
7: 0	PWML	工作模式时, 当捕获到捕获源之后抓取的计数器低八	RW	_
A)	*	位的值锁存在此寄存器中。		

13.4.44. **WUT_PWMH**

Addr = 0x159 (XSFR)

D:+(~)	M	Diti	עו/ כו	D 4
Bit(s)	Name	Description	R/W	Keset

		TIMER 占空比高八位		
7 0	PWMH	PWM 工作模式时,该值是 PWM 的占空比设置值;捕获	RW	
7: 0	L MMIII	工作模式时, 当捕获到捕获源之后抓取的计数器高八	IXW	_
		位的值锁存在此寄存器中。		

13.4.45. **BUZ_CON**

Addr = 0x164 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		计数使能		
7	BUZEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		计数标志位		
6	COVPEND	0x0: 没有产生标志	RW	0**0
0	COVPEND	0x1: 计数等于 BUZDIV 时产生标志	KW	0x0
		写1清零,写0无效。		
		计数中断使能		
5	COVIE	0x0: 不使能	RW	0x0
		0x1: 当计数等于 BUZDIV 时允许中断发生		
		模式选择及计数使能		
4	TMRMODE	OxO: PWM 模式	RW	0x0
		0x1: 计数器模式		
3	- 3	保留	RO	0x0
	3.77	TIMER 预分频配置.		
		0x0: 1/1		
	1.45	0x1: 1/2		
	-125	0x2: 1/4		
2: 0	PSC	0x3: 1/8	RW	0x0
	9	0x4: 1/16		
		0x5: 1/32		
		0x6: 1/64		
		0x7: 1/128		

13.4.46. **BUZ DIV**

Addr = 0x165 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		TIMER 计数周期		
7: 0	BUZDIV	计数模式下为周期, PWM 模式下当计数值等于 BUZDIV	RW	-
		时 PWM 输出翻转。	XLO	

13.5. 使用流程说明

13.5.1. 计数器/定时器工作模式

- 1) 配置 SOURCESEL;
- 2) 配置计数器、周期,比较值寄存器;
- 3) 配置 TMRPSC;
- 4) 配置 TMRIE;
- 5) TMRMODE = 0x1;

13.5.2. 捕获工作模式

- 1) 配置 SOURCESEL;
- 2) 配置计数器、周期寄存器;
- 3) 配置 TMRPSC;
- 4) 配置 TMRIE, CAPIE;
- 5) 配置 CAPSEL、EDGESEL;
- 6) 配置 TMRMODE = 0x3;

13.5.3. PWM 工作模式

- 1) 配置 SOURCESEL;
- 2) 配置计数器、周期、比较值寄存器;
- 3) 配置 TMRPSC;
- 4) 配置 TMRIE,;
- 5) 配置 TMRMODE = 0x2;

14.Normal Timer 模块

14.1. 功能概述

Normal Timer 模块是由一个 16 位的基础功能定时器 Timer4 组成,其支持多种计数源选择,支持计数器模式,捕获模式,和 PWM 模式等多种工作模式。通过寄存器 TMR_ALLCON[4]写 1 可以清零 Timer4 计数。

14.1.1. 计数源选择

计数源选择:

- 1) 32K 低速 RC (LIRC)
- 2) 八分频高速 RC (HIRC)
- 3) 二分频 XOSC
- 4) 外部 GPIO 输入/8K RC
- 5) 系统时钟

通过配置 TMR4_CONO 寄存器的 INCSRCSEL 选择不同的计数源,配置 TMR4_CONO 的 PSC 配置不同的分频系数。

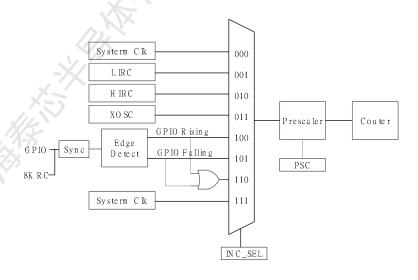


图 14-1 分频寄存器计数源选择逻辑示意图

14.1.2. 输入捕获源

输入捕获,可选 8KRC 时钟、外部 GPIO 触发或者比较器触发。通过配置 SYS_CON2[7]置 1,选择 8K RC 作为输入源。外部 GPIO 触发可以选择单一 Timer4 的 CAPO PIN 作为触发源,也可以选择 CAPO PIN 异或 CAP1 PIN 异或 CAP2 PIN 作为触发源。

14.1.3. 输入捕获模式

捕获触发信号首先通过一个选择器选择输入后,经过同步器同步得到 CAP_SRC,然后边沿检测器产生边沿触发信号,最后通过一个选择器选出最终捕获信号 CAP_EV。当捕获信号有效时,自动把当前计数器的值存入 TMR4_CAPx 寄存器,并且产生捕获中断信号。

Timer4 能保存 4 级捕获事件,即可以连续保存 4 次捕获事件发生时计数器的值。每当捕获事件发生时,把当前计数值保存到对应捕获寄存器寄存器(TMR4 CAPx)。

- 1级: 比较值存入 TMR4_CAP10 和 TMR4_CAP11 寄存器中;
- 2级: 比较值存入 TMR4 CAP20 和 TMR4 CAP21 寄存器中;
- 3级: 比较值存入 TMR4_CAP30 和 TMR4_CAP31 寄存器中;
- 4级: 比较值存入 TMR4 CAP40 和 TMR4 CAP41 寄存器中;

通过配置寄存器 CAPxPOL 可以独立配置每个捕获事件极性,选择上升沿还是下降沿捕获。通过配置寄存器 CTRRSTx 可以独立配置对应的捕获事件发生时,是否复位计数器的值。

每次捕获事件发生,都会产生对应的捕获标志。通过配置寄存器 TMR4_IEO 可以独立配置每次捕获事件发生是否产生中断。

捕获模式下,支持计数值溢出中断。该模式下,计数周期固定为16'hffff。当计数值达到16'hffff,会产生溢出标志0VFFLAG(TMR4_FLG[4]),通过配置TMR4_IE0寄存器可以产生溢出中断。

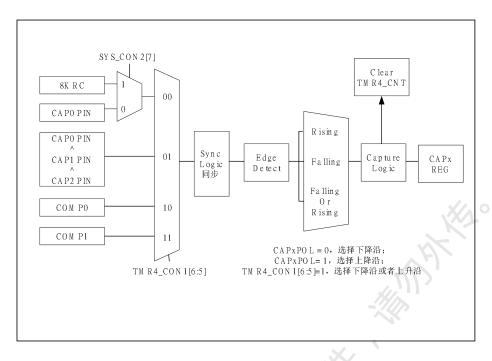


图 14-2 分频寄存器捕获模式选择逻辑示意图

14.1.4. **PWM** 模式

PWM 工作模式可以产生一个由 TMR4_CAP10 和 TMR4_CAP11 寄存器确定周期, TMR4_CAP20 和 TMR4_CAP21 寄存器确定占空比的信号。

当使用计数模式和 PWM 模式时, TMR4_CAP30 和 TMR4_CAP31 为 TMR4_CAP10 和 TMR4_CAP11 的影子寄存器, TMR4_CAP40 和 TMR4_CAP41 为 TMR4_CAP20 和 TMR4_CAP21 的影子寄存器。当向 TMR4_CAP10 和 TMR4_CAP11 写入值时,该值同时会写入 TMR4_CAP30 和 TMR4_CAP31;当向 TMR4_CAP20 和 TMR4_CAP21 写入值时,该值同时会写入 TMR4_CAP40 和 TMR4_CAP41。而写影子寄存器时,不影响比较值寄存器。

每次计数值等于周期时,自动把 TMR4_CAP30 和 TMR4_CAP31 的值赋值到 TMR4_CAP10 和 TMR4_CAP11, 把 TMR4_CAP40 和 TMR4_CAP41 的值赋值到 TMR4_CAP20 和 TMR4_CAP21。

14.1.5. 红外模式

使能 SYS_CON2[5], Timer4 可以和 Simple Timer 中的 Timer2 配合使用完成红外 PWM 调制。将红外编码中的 1 或者 0 的周期和占空比填入 Timer4 对应的寄存器,将 Timer2 作为载波发生器,可调制所需求的红外输出波形。

14.2. 模块框图

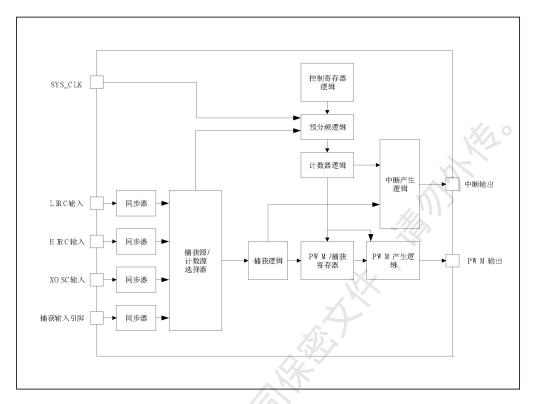


图 14-3 Normal Timer 模块框图

14.3. 寄存器列表

表 14-1 Timer2 register list

address	Register Name	Description
0xD1 (SFR)	TMR_ALLCON	TIMER ALL Control Register
OxDA (SFR)	TMR4_CONO	TIMER4 Control O Register
0xDB (SFR)	TMR4_CON1	TIMER4 Control 1 Register
0xDC (SFR)	TMR4_CON2	TIMER4 Control 2 Register
0xDD (SFR)	TMR4_CON3	TIMER4 Control 3 Register
OxDE (SFR)	TMR4_EN	TIMER4 Enable Register
OxDF (SFR)	TMR4_IEO	TIMER4 Interrupt Enable Register

0xE2 (SFR)	TMR4_CLRO	TIMER4 Clear O Register
0xE4 (SFR)	TMR4_CNT0	TIMER4 Counter O Register
0xE5 (SFR)	TMR4_CNT1	TIMER4 Counter 1 Register
0xE6 (SFR)	TMR4_CAP10	TIMER4 Capture 10 Register
0xE7 (SFR)	TMR4_CAP11	TIMER4 Capture 11 Register
0xE8 (SFR)	TMR4_CAP20	TIMER4 Capture 20 Register
0xE9 (SFR)	TMR4_CAP21	TIMER4 Capture 21 Register
0xEA (SFR)	TMR4_CAP30	TIMER4 Capture 30 Register
0xEB (SFR)	TMR4_CAP31	TIMER4 Capture 31 Register
0xEC (SFR)	TMR4_CAP40	TIMER4 Capture 40 Register
0xED (SFR)	TMR4_CAP41	TIMER4 Capture 41 Register
OxEE (SFR)	TMR4_FLAGO	TIMER4 Flag Register
111	5 方 恕 :	117
14.4. 音	寄存器详细说明	

14.4.1. **TMR_ALLCON**

Addr = 0xD1 (SFR)

Bit(s	Name	Description	R/W	Reset
7: 6	- ///	-	1	0x0
5	WUTSWSYNC	Wake Up Timer 计数清零 写 1 清零,写 0 无效	WO	0x0
4	TMR4SWSYNC	Timer4 计数清零 写 1 清零,写 0 无效	WO	0x0
3	TMR3SWSYNC	Timer3 计数清零 写 1 清零,写 0 无效	WO	0x0
2	TMR2SWSYNC	Timer2 计数清零	WO	0x0

		写1清零,写0无效		
1	TMD1 CWCVNC	Timer1 计数清零	WO.	0 0
	TMR1SWSYNC	写1清零,写0无效	WO	0x0
	TMDOCWCVNC	TimerO 计数清零	WO.	0 0
0	TMROSWSYNC	写1清零,写0无效	WO	0x0

14.4.2. **TMR4_CON0**

Addr = OxDA (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 5	PSC	计数预分频 0x0: 不分频 0x1: 2分频 0x2: 4分频 0x3: 8分频 0x4: 16分频 0x5: 32分频 0x6: 64分频 0x7: 128分频	RW	0x0
4: 2	INCSEL	 计数信号选择 0x0: 系统时钟 0x1: LIRC 上升沿 0x2: HIRC 上升沿 0x3: XOSC 上升沿 0x4: GPIO 输入上升沿 0x5: GPIO 输入下降沿 0x6: GPIO 输入边沿(上升下降) 0x7: 系统时钟 	RW	0x0
1: 0	TMRMODE	模式选择 0x0: 定时器计数模式 0x1: PWM 输出模式 0x2: 捕获模式 0x3: 保留	RW	0x0

14.4.3. **TMR4_CON1**

Addr = OxDB (SFR)

Bit(s)	Name	Description	R/W	Reset
7	_	保留		0x0
		捕获信号源选择		
	CAPSEL	0x0: GPIO 输入或 LIRC 8 分频 (8K)	K1°	
6 : 5		0x1: CAP PINO/1/2	RW	0x0
		0x2: 比较器 0		
		0x3: 比较器 1		
4: 0	-	保留,如写入非0,可能引起计数器异常	RW	0x0

14.4.4. TMR4_CON2

Addr = OxDC (SFR)

Bit(s)	Name	Description	R/W	Reset
7	CAP3POL	3 级捕获信号极性 0x0: 选择上升沿 0x1: 选择下降沿 Note: 要选择双沿请配置 CAPSEL == 0x1;	RW	0x0
6	CAP2POL	2 级捕获信号极性 0x0: 选择上升沿 0x1: 选择下降沿 Note: 要选择双沿请配置 CAPSEL == 0x1;	RW	0x0
5	CAP1POL	1 级捕获信号极性 0x0: 选择上升沿 0x1: 选择下降沿 Note: 要选择双沿请配置 CAPSEL == 0x1;	RW	0x0
4	CTRRST4	4 级捕获信号有效时,计数复位使能 0x0: 不使能 0x1: 使能	RW	0x0
3	CTRRST3	3 级捕获信号有效时,计数复位使能 0x0: 不使能	RW	0x0

		0x1: 使能		
		2 级捕获信号有效时,计数复位使能		
2	CTRRST2	0x0: 不使能	RW	0x0
		0x1: 使能		
		1级捕获信号有效时,计数复位使能		
1	CTRRST1	0x0: 不使能	RW	0x0
		0x1: 使能		
0	-	保留		0x0

14.4.5. **TMR4_CON3**

Addr = 0xDD (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 4	_	保留	RW	0x0
		捕获有效级数		
		0x0: 1 级		
3: 2	CAPCNT	0x1: 2级	RW	0x0
		0x2: 3级		
		0x3: 4级		
	PWMPOL	PWM 输出极性		
1		0x0: 正常输出	RW	0x0
		0x1: 取反输出		
	3	4 级捕获信号极性		
0	CARAROL	0x0: 选择上升沿	DW	0.0
	CAP4POL	0x1: 选择下降沿	RW	0x0
	1375	Note: 要选择双沿请配置 CAPSEL == 0x1;		

14.4.6. **TMR4_EN**

Addr = OxDE (SFR)

ĺ	Bit(s)	Name	Description	R/W	Reset
	7 : 1	_	保留	RW	0x0
	0	TMREN	TIMER4 计数器使能	RW	0x0

	0x0: 不使能	
	0x1: 使能	

14.4.7. **TMR4_IE0**

Addr = OxDF (SFR)

Bit(s)	Name	Description	R/W	Reset
7		Y	RW	0x0
6	CMPIE	计数值等于比较值中断使能 0x0: 不使能 0x1: 使能	RW	0x0
5	PRDIE	计数值等于周期值中断使能 0x0: 不使能 0x1: 使能	RW	0x0
4	OVFIE	捕获模式下计数值溢出中断使能 0x0: 不使能 0x1: 使能	RW	0x0
3	CAP4IE	4 级捕获信号有效中断使能 0x0: 不使能 0x1: 使能	RW	0x0
2	CAP3IE	3 级捕获信号有效中断使能 0x0: 不使能 0x1: 使能	RW	0x0
1	CAP2IE	2 级捕获信号有效中断使能 0x0: 不使能 0x1: 使能	RW	0x0
0	CAP1IE	1 级捕获信号有效中断使能 0x0: 不使能 0x1: 使能	RW	0x0

14.4.8. **TMR4_CLR0**

Addr = 0xE2 (SFR)

Bit(s)	Name	Description	R/W	Reset
DIT(S)	Name	Description	K/W	Keset

7	_	保留	WO	-
6	CMPFLGC	计数值等于比较值标志清零 写 1 清零,写 0 无效	WO	_
5	PRDFLGC	计数值等于周期值标志清零 写 1 清零,写 0 无效	WO	-
4	OVFFLGC	捕获模式下计数值溢出标志清零 写 1 清零,写 0 无效	WO	-
3	CAP4FLGC	4级捕获信号有效标志清零 写1清零,写0无效	WO	_
2	CAP3FLGC	3 级捕获信号有效标志清零 写 1 清零,写 0 无效	WO	-
1	CAP2FLGC	2 级捕获信号有效标志清零 写 1 清零,写 0 无效	WO	_
0	CAP1FLGC	1 级捕获信号有效标志清零 写 1 清零,写 0 无效	WO	_

14.4.9. **TMR4_CNT0**

Addr = 0xE4 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNTO	TIMER4 计数器低 8bit	RW	-

14.4.10. TMR4_CNT1

Addr = 0xE5 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CNT1	TIMER4 计数器高 8bit	RW	_

14.4.11. **TMR4_CAP10**

Addr = 0xE6 (SFR)

Bit(s) Name	Description	R/W	Reset
-------------	-------------	-----	-------

7 0	CAP10	TIMER4 计数周期低 8bit	DW	_
7: 0	CAPTO	捕获模式下,1级捕获值低8位	RW	

14.4.12. **TMR4_CAP11**

Addr = 0xE7 (SFR)

Bit(s)	Name	Description	R/W	Reset
	CAD11	TIMER4 计数周期高 8bit	DW	
7: 0	CAP11	捕获模式下,1级捕获值高8位	RW	_

14.4.13. **TMR4_CAP20**

Addr = 0xE8 (SFR)

Bit(s)	Name	Description	R/W	Reset		
7 0	CADOO	TIMER4 比较值低 8bit	DW			
7: 0	CAP20	捕获模式下,2级捕获值低8位	RW	_		
14.4	14.4.14. TMR4_CAP21					

Addr = 0xE9 (SFR)

Bit(s)	Name	Description		Reset
7. 0	CADO1	TIMER4 比较值高 8bit	DW	
7: 0	CAP21	捕获模式下,2级捕获值高8位	RW	_

14.4.15. **TMR4_CAP30**

Addr = OxEA (SFR)

Bit(s)	Name	Description		Reset
7. 0	CADOO	TIMER4 计数周期影子寄存器低 8bit	DW	
7 : 0	CAP30	捕获模式下,3级捕获值低8位	RW	_

版权所有 侵权必究 Copyright © 2022 by Taixin Semiconductor All rights reserved

14.4.16. **TMR4_CAP31**

Addr = OxEB (SFR)

Bit(s)	Name	Description		Reset
7 0	CADO1	TIMER4 计数周期影子寄存器高 8bit	DW	
7: 0	CAP31	捕获模式下,3级捕获值高8位	RW	_

14.4.17. **TMR4_CAP40**

Addr = 0xEC (SFR)

Bit(s)	Name	Description		Reset
7: 0	CAP40	TIMER4 比较值影子寄存器低 8bit	RW	_
7: 0	CAP40	捕获模式下,4级捕获值低8位	KW	_

14.4.18. **TMR4_CAP41**

Addr = OxED (SFR)

Bit(s)	Name	Description	R/W	Reset
7 : 0	CAP41	TIMER4 比较值影子寄存器高 8bit 捕获模式下,4级捕获值高 8 位	RW	-

14.4.19. **TMR4_FLAG0**

Addr = 0xEE (SFR)

Bit(s)	Name	Description	R/W	Reset
7	-1X-3	保留	RO	-
^	T	计数值等于比较值标志		
6	CMPFLAG	0x0: 没有产生标志	RO	-
		0x1: 产生标志		
		计数值等于周期值标志		
5	PRDFLAG	0x0: 没有产生标志	RO	-
		0x1: 产生标志		

		捕获模式下计数值溢出标志		
4	OVFFLAG	0x0:没有产生标志	RO	-
		0x1: 产生标志		
		4级捕获信号有效标志		
3	CAP4FLAG	0x0:没有产生标志	RO	-
		0x1: 产生标志		
		3级捕获信号有效标志	// 0	
2	CAP3FLAG	0x0: 没有产生标志	RO	_
		0x1: 产生标志		
		2级捕获信号有效标志		
1	CAP2FLAG	0x0:没有产生标志	RO	-
		0x1: 产生标志		
		1级捕获信号有效标志		
0	CAP1FLAG	0x0: 没有产生标志	RO	-
		0x1: 产生标志		

14.5. 使用流程说明

14.5.1. 计数器/定时器工作模式

- 1) 配置 INCSEL;
- 2) 配置计数器、周期,比较值寄存器;
- 3) 配置 PSC;
- 4) 配置 TMRIE;
- 5) TMRMODE = 0x0;
- 6) 使能;

14.5.2. 捕获工作模式

- 1) 配置 INCSEL;
- 2) 配置计数器、周期,比较值寄存器;
- 3) 配置 PSC;
- 4) 配置 TMRIE, CAPIE, OVFIE;
- 5) 配置 CAPSEL、CAPPOL、CAPNUM;

- 6) 配置 TMRMODE = 0x2;
- 7) 使能;

14.5.3. PWM 工作模式

- 1) 配置 INCSEL;
- 2) 配置计数器、周期、比较值寄存器;
- 3) 配置 PSC;
- 4) 配置 TMRIE;
- 5) 配置 TMRMODE = Ox1;
- 6) 使能;

14.5.4. 红外工作模式

- 1) 配置 INCSEL;
- 2) 配置计数器、周期、比较值寄存器;
- 3) 配置 PSC;
- 4) 配置 Simple Timer 模块中 Timer2 的周期、比较值,配置 PWM 模式,作为载波;
- 5) 配置 SYSCON2[5] 使能红外功能;
- 6) 配置 TMRMODE = 0x1;
- 7) 使能两个 Timer;

15.Super timer 模块 (增强型 PWM 模块)

15.1. 功能概述

增强型 STMR 模块支持 6 路 PWM 发生器,可以配置成相互独立的 6 路 PWM 输出 (STMRO-STMR5),也可以配置成 3 对分别带有编程死区发生器的互补 PWM (STMRO-STMR1,STMR2-STMR3,STMR4-STMR5)。

每一路 PWM 拥有 1 个 8 位预分频器。每一路 PWM 输出有独立的 16 位计数器进行控制, 另外 16 位的比较器用以调节占空比。6 路 PWM 发生器提供 30 个中断标志,相关 PWM 通 道的周期或占空比与计数器相符,将产生中断标志,每一路 PWM 有单独的使能位。

每路 PWM 可配置成单次模式(产生一个 PWM 信号周期)或者循环模式(连续输出 PWM 波形)。

增强型 STMR 模块具有如下特性:

- ▶ 6 路独立PWM输出: STMRO-STMR5;
- ▶3组互补PWM对输出: STMRO-STMR1, STMR2-STMR3, STMR4-STMR5;
- ▶ 可插入可编程死区时间,8 种死区模式可选;
- ▶3组同步PWM 对输出: STMRO-STMR1, STMR2-STMR3, STMR4-STMR5;
- ▶ 支持群组控制, STMRO, STMR2, STMR4 输出同步, STMR1, STMR3, STMR5 输出同步;
- ▶ 单次模式或者自动装载模式;
- ▶ 支持边沿对齐,中心对齐 2 种模式;中心对齐模式支持对称计数和非对称计数;
- ▶ 每路 PWM 可独立选择大于比较值或者小于比较值输出;
- ▶ 硬件刹车保护(外部 FB 触发,比较器通道 0 或者 1,ADC,支持软件触发); 请先开启互补、同步、群组模式后,再进行周期比较值配置。

15.1.1. 基本动作

基本波形模式

增强型 STMR 模块是由计数器模块、输出比较单元、波形发生器、故障检测和输出控制器组成。

计数器:

时钟输入增强型 STMR 模块,通过预分频器 (STMRn_PSC) 配置计数器的计数频率,周期寄存器 (STMRn_PRH, STMRn_PRL) 设置其计数周期。为了防止在 PWM 运行的过程中随意修改周期设置,采用缓冲寄存器 (Period Buffer) 对周期进行缓存。如果 PWM 设置为连续运行模式 (STMR_CNTMD 寄存器中的 STMRnCNTM=1),在每个 PWM 的自动重载点会自动将周期

寄存器的值加载到缓冲寄存器(Period Buffer)当中。

PWM 计数器有两种计数模式: 边沿对齐向下计数 (Down count mode) 和中心对齐计数 (UP-Down count mode)。

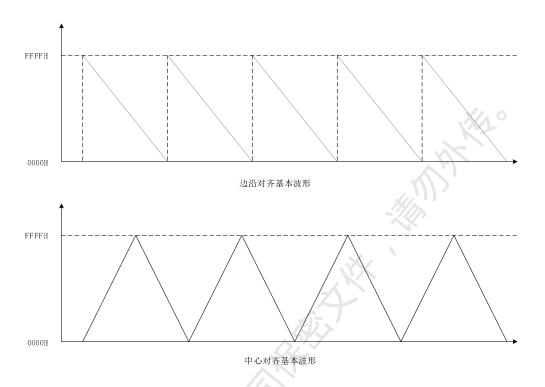


图 15-1 PWM 计数模式波形图

输出比较单元:

输出比较单元是由占空比寄存器(STMRn_CMPAH, STMRn_CMPAL, STMRn_CMPBH, STMRn_CMPBL)组成,用于设置 PWM 占空比。STMRn_CMPBH, STMRn_CMPBL 仅在上下计数模式中有效。同样地,为了防止在运行的过程中随意修改 PWM 的占空比设置,采用缓冲寄存器(Duty Buffer)和 PWM 计数器进行比较,以进行输出电平的翻转。如果设置为连续运行模式,在每个自动装载点会自动将占空比寄存器的值加载到缓冲寄存器(Duty Buffer)当中。

装载点:

边沿模式, CNT=0 时自动装载;

上下计数模式可选装载点: STMR_CNTMD[7]=1 选择周期点时加载; STMR_CNTMD[7]=0 选择 0 点自动装载;

STMR CNTEN=0时,写占空比和周期寄存器会直接更新至缓冲寄存器中。

波形发生单元:

波形发生器是由死区控制单元和输出选择控制单元组成。针对带死区的互补输出, STMR01_DT/STMR23_DT/STMR45_DT 用于设置死区时间;再结合输出选择控制单元对比较值 A 点或 B 点的输出值进行控制。

故障检测(刹车功能):

故障检测模块内嵌在增强型 STMR 中,配置为输入故障侦测,是为了保护系统防止器件损坏。一旦检测到有效的故障信号输入,则强制关断 PWM 的输出。为了适应不同的驱动要求,关断的电平是可以进行选择配置。

掩码输出:

针对类似方波电机控制这种特殊的应用场合,掩码输出显得尤为重要。STMR 每个通道都有单独的掩码控制位和掩码数据位,通过掩码控制寄存器 STMR_PWMMSKEN 和掩码数据寄存器 STMR_PWMMSKD 设置。

当掩码输出禁止 STMR PWMMSKEN =0 时, STMRn 输出正常的 PWM 波形;

当掩码输出使能 STMR PWMMSKEN =1 时, STMRn 输出掩码寄存器 STMR PWMMSKD 的数据。

输出控制器:

输出控制器,用于对 PWM 的输出状态进行控制。PWM 输出使能控制寄存器 STMR_PWMEN 用于设置各通道的输出使能,STMR_PWMBEN 用于设置 B 点输出使能。发生故障需要强制关断 PWM 时,MCU 可根据刹车数据寄存器 STMR_BRKDAT 中的设置输出相应的电平以适应不同外设的需求。

15.1.2. 增强型 STMR 操作

15.1.2.1. 加载更新模式

计数器加载模式有两种:单次模式与自动加载模式。单次模式下,周期和占空比数据在计数使能前自动加载;自动加载模式下,周期和占空比相关数据在自动加载点自动加载。

由于 STMR 存在双缓存结构,在运行的过程中,改变相关运行寄存器: STMRn_PRL/STMRn_PRH/STMRn_CMPAL/STMRn_CMPAH/ STMRn_CMPBL/ STMRn_CMPBH/的值,PWM 输出波形不会立即改变,只有在装载点时这些寄存器的值才会加载到相应的缓存中。这样的结构在改变周期占空比数据后,不会立即改变当前 PWM 周期的输出波形,PWM 波形在下个周期才会做出相应的变化。即任何 PWM 相关数据的改变不会影响当前一个完整 PWM 周期。

在高速的应用中,有可能会出现加载点已经到来,但写入运行寄存器的操作还未完成的

情况。此时不期望出现部分运行数据已经加载,另外一部分运行数据没有加载的情况。针对该高速应用情况,PWM 模块提供了加载使能位。

当改变相关运行寄存器后,需要将加载使能位 STMR_LOADEN 置 1,周期和占空比加载 完毕后 STMR_LOADEN 位自动清零。即可以通过读取该位来判断是否将相关寄存器的值加载到 实际电路中。如果 STMR_LOADEN=0,则表示已经加载,将影响正在输出的 PWM 波形;如果 STMR_LOADEN=1,则表示还未加载,当前的 PWM 波形还未发生变化,将在下一个加载点加载 之前改变的寄存器的值。如果再次改变相关运行寄存器的值,也需重新将 STMR_LOADEN 置 1。

注:当 STMR_LOADEN=1 时,对周期和占空比寄存器内容的更改,可能引发无法预测的结果。建议先更改周期和占空比寄存器内容,再将加载使能位 STMR_LOADEN 置 1,最后等待加载完成。

15.1.2.2. 单次计数模式

单次计数模式是 STMR 计数器只工作一个 PWM 周期,而后 PWM 计数器停止运行的模式。单次计数模式完成,STMR 计数使能控制位硬件清 0(STMR_CNTEN 寄存器中的 STMRnCNTEN=0),若再次开启单次模式需使能 STMR 计数使能控制位 (STMRnCNTEN=1)。通过 STMR 计数器模式控制寄存器 STMR CNTMD 中的 STMRnCNTM=0 可选择单次计数模式。

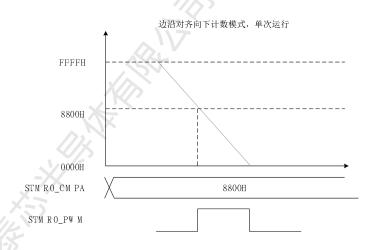


图 15-2 PWM 单次计数模式波形图-中心对齐模式

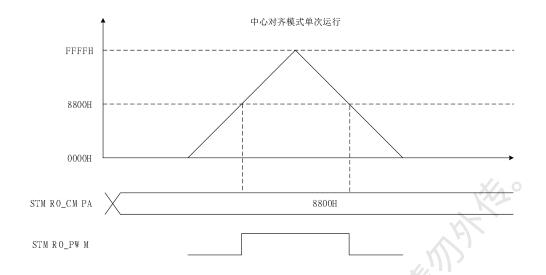


图 15-3 PWM 单次计数模式波形图-边沿对齐向下数模式

15.1.2.3. 边沿对齐模式

边沿对齐模式下,STMR 计数器向下计数模式(Down count)。16 位 STMRn 计数器的初始值为周期值,以此开始向下计数直至计数值变为0,此时计数器自动将周期寄存器的值加载到计数寄存器中,继而开始下一个PWM 周期的计数。

通过设置 STMR_PWMVALA 寄存器来控制 PWM 输出电平高低。STMRnPWMVA=0,表示当计数寄存器的值小于占空比寄存器的值时输出高电平,大于等于时输出低电平;STMRnPWMVA=1,表示当计数寄存器的值大于占空比寄存器的值时输输出高电平,小于等于时输出低电平。

15.1.2.4. 中心对齐模式

对称计数

中心对齐对称计数模式下,STMRn 计数器采用上下计数模式(Up-Down count),16 位计数器寄存器从0开始向上计数,当计数寄存器的值等于周期值后又自动开始向下计数直到0,后续的PWM 周期重复这样的计数操作。(系统复位重新使能计数器时,计数先减至0,然后开始正常的上下计数模式。如果中途停止计数,再使能计数器,计数将根据停止时的方向向上计数到周期或者向下计数到0,再开始正常的上下计数。)

无论是向上计数还是向下计数,当计数寄存器的值与占空比寄存器 STMRn_CMPA 的值相等时,STMRn 的 PWM 输出电平就会发生翻转。翻转前 PWM 输出值由相应的 STMR_PWMVALA 寄

存器设置。

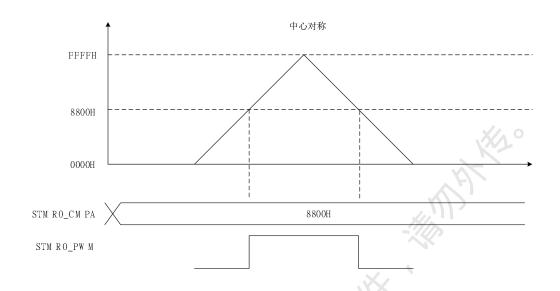


图 15-4 PWM 中心对齐模式波形图

非对称计数

中心对齐非对称计数模式,是电机控制里非常重要的一个特性。PWM 计数器的工作方式依然采用上下计数模式(Up-Down count)。

在这种模式下,有两个 16 位比较寄存器: STMRn_CMPA,STMRn_CMPB。STMRn 计数器寄存器从 0 开始向上计数,当计数寄存器的值等于 STMRn_CMPA 时,STMRn 的 PWM 输出电平翻转,之后计数寄存器继续向上计数至周期,然后开始向下计数,在向下计数的过程中当计数寄存器的值等于等于 STMRn_CMPB 时,STMRn 的 PWM 输出电平发生翻转,之后继续向下计数至 0。开启非对称模式需要将 STMR_PWMBEN 寄存器中的 STMRnPWMBEN 置 1。

中心对齐非对称模式的时序图如下所示:

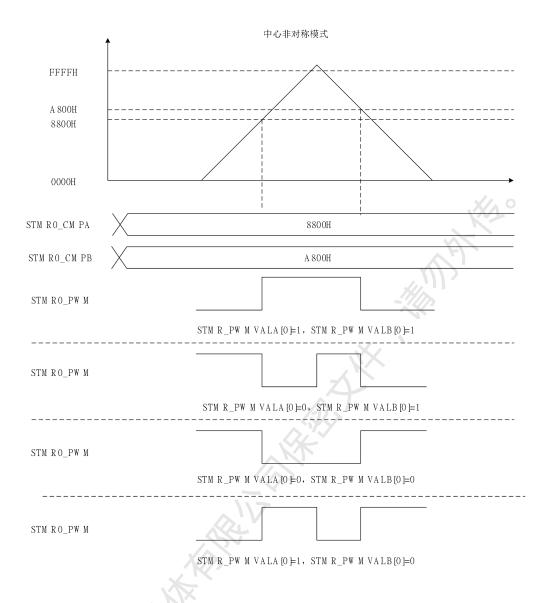


图 15-5 PWM 非中心对称模式

15.1.2.5. 带死区的互补模式

在实际的电机控制应用中,用于驱动逆变桥的 PWM 信号需要具备互补输出的模式,即上桥臂的驱动信号正好和下桥臂的驱动信号反相。

在增强型 STMR 模块中, 6 通道 PWM 可设置为 3 对互补信号: STMR0 和 STMR1, STMR2 和 STMR3, STMR4 和 STMR5。STMR1, STMR3, STMR5 的周期与占空比分别由 STMR0, STMR2, STMR4 相关寄存器决定。在设置 STMR0, STMR2, STMR4 的周期和占空比前,需要先配置 STMR_CONO 寄存器,选择互补模式。

在电机控制应用当中,理想的 PWM 信号是在同一时刻发生电平的翻转,由于 MOS 管的开通和关断存在着延时,这样就容易造成电源对地直通,从而损坏功率管。为了避免这种现象,带死区时间的 PWM 就显得尤为重要。在互补模式下,每组互补 PWM 均支持插入死区时间,插入的死区时间如下:

STMRO/1 死区时间: (STMRO1_DT+1) *TSTMRO

STMR2/3 死区时间: (STMR23 DT+1) *TSTMR2

STMR4/5 死区时间: (STMR45 DT+1) *TSTMR4

TSTMRO, TSTMR2, TSTMR4 分别为 STMRO, STMR2, STMR4 的时钟源周期。死区时间为 8 位。

当 PWM 通过计数 CNT 和占空比比较,输出的波形通过死区时,可以通过配置 STMR_DTCON和 STMR_DTEN寄存器中的死区模式选择,以及 STMR_EDGE_SEL 和 STMR_DT_DAT 改变最终输出到 GPIO 上的 PWM 波形。

死区模式对于波形的影响,以STMR01互补模式为例,STMR01 DT=0xFF:

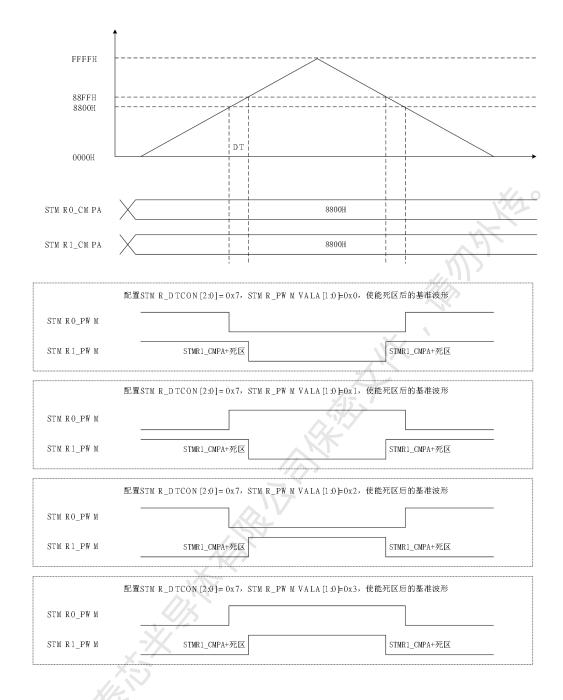
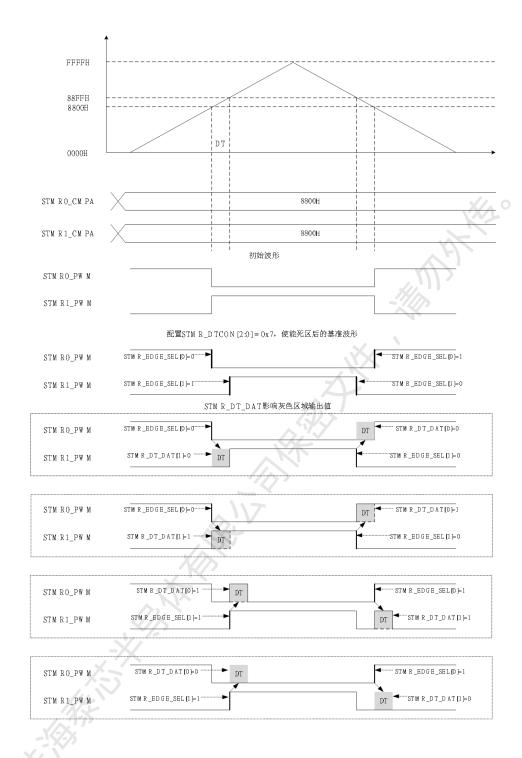
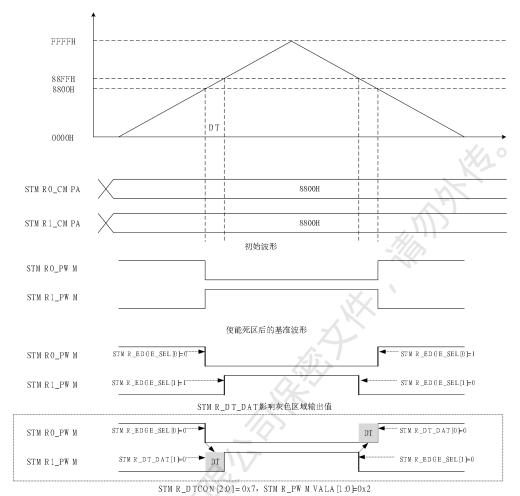


图 15-6 PWM 死区模式波形图

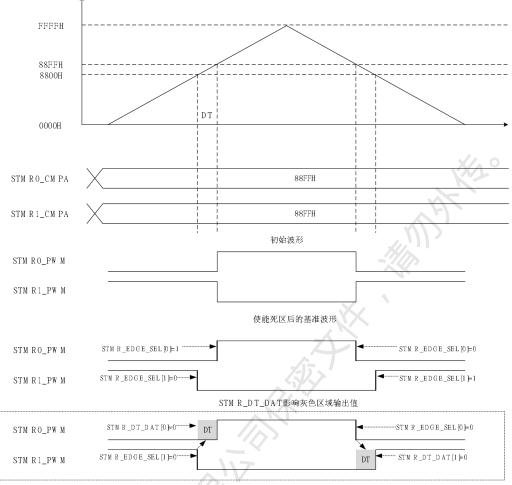
STMR_EDGE_SEL 和 STMR_DT_DAT 改变对最终输出到 GPIO 上的 PWM 波形影响: 改变 STMR_EDGE_SEL[1]和 STMR_DT_DAT[0]的值影响 STMRO_PWM 的输出波形; 改变 STMR_EDGE_SEL[0]和 STMR_DT_DAT[1]的值影响 STMR1_PWM 的输出波形。 以 STMR01 互补,死区模式选择 7,STMR_PWMVALA[1:0]=0x2 为例:




图 15-7 死区触发边缘选择与死区输出值的关系图

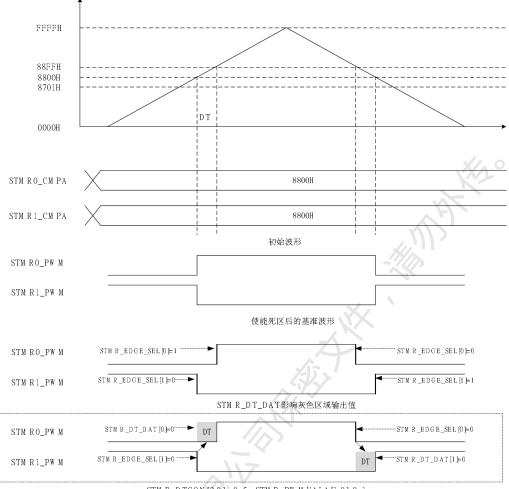
中心对齐与边沿对齐均支持互补模式。中心对齐支持8种死区模式可选。这8中模式的主要区别在于死区存在于互补波形的哪一个输出波形中。

以 STMR01 互补模式示意:


 $STMR_CONO[1: 0]=0x2$, $STMR_CNTMD[1: 0]=0x3$, $STMR_CNTTYPE[1: 0]=0x3$,

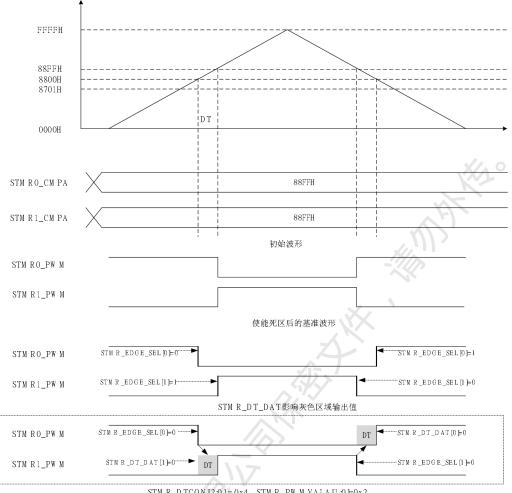
STMR_PWMEN[1: 0]=0x3, STMRO1_DT=0xFF, STMR_DTEN[0]=0x1

如需要输出其他波形,请根据寄存器描述配置STM R_PW M VALA [1.0]、STM R_EDGE_SEL [1.0]和STM R_DT_DAT [1.0]的值


图 15-8 PWM 死区模式 7 互补波形图

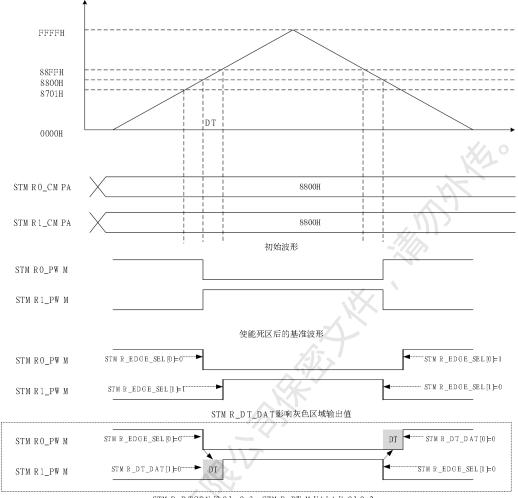
STM R_D TCON [2:0] = 0x6, STM R_PW M VALA [1:0]=0x1

如需要输出其他波形,请根据寄存器描述配置STM R_PW M VALA [1.0]、STM R_EDGE_SEL [1.0]和STM R_DT_DAT [1.0]的值


图 15-9 死区模式 6 互补波形图

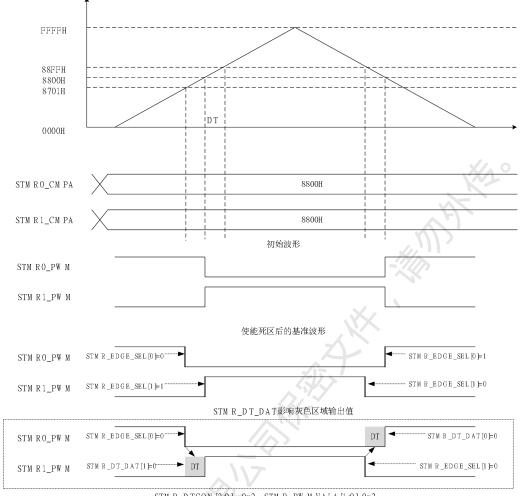
STM R_D TCON [2:0] = 0x5, STM R_PW M VALA [1:0]=0x1

如需要输出其他波形,请根据寄存器描述配置STM R_PW M VALA [1:0]、STM R_EDGE_SEL[1:0]和STM R_DT_DAT[1:0]的值


图 15-10 死区模式 5 互补波形图

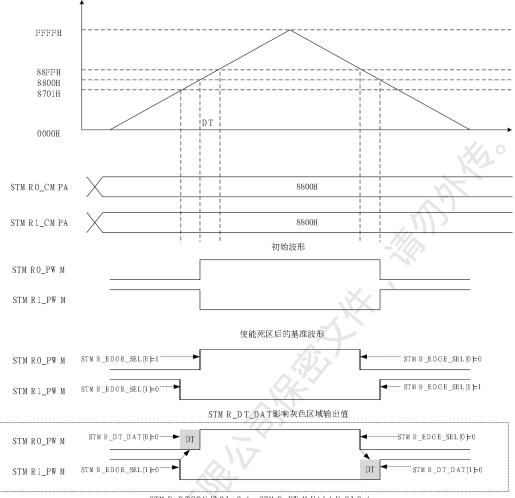
STM R_DTCON[2:0]=0x4, STM R_PW M VALA[1:0]=0x2

如需要输出其他波形,请根据寄存器描述配置STM R_PW M VALA [1:0]、STM R_EDGE_SEL[1:0]和STM R_DT_DAT[1:0]的值


图 15-11 死区模式 4 互补波形图

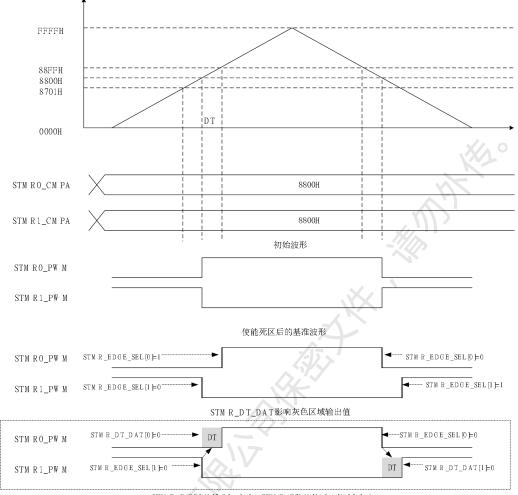
STM R_DTCON[2:0]=0x3, STM R_PW M VALA[1:0]=0x2

如需要输出其他波形,请根据寄存器描述配置STM R_PW M VALA[1.0]、STM R_EDGE_SEL[1.0]和STM R_DT_DAT[1.0]的值


图 15-12 死区模式 3 互补波形图

STM R_D TCON [2:0] = 0x2, STM R_PW M VALA [1:0]=0x2

如需要输出其他波形,请根据寄存器描述配置STM R_PW M VALA [1.0]、STM R_EDGE_SEL[1:0]和STM R_DT_DAT[1:0]的值


图 15-13 死区模式 2 互补波形图

STM R_D TCON [2:0] = 0x1, STM R_PW M VALA [1:0]=0x1

如需要输出其他波形,请根据寄存器描述配置STM R_PW M VALA[1.0]、STM R_EDGE_SEL[1.0]和STM R_DT_DAT[1.0]的值

图 15-14 死区模式 1 互补波形图

STM R_D TCON [2:0] = 0x0, STM R_PW M VALA [1:0]=0x1

如需要输出其他波形,请根据寄存器描述配置STM R_PW M VALA[1.0]、STM R_EDGE_SEL[1.0]和STM R_DT_DAT[1.0]的值

图 15-15 死区模式 0 互补波形图

在配置死区时,请先根据 STMR_PWMVALA 和 STMR_PWMVALB 以及 STMR_DTCON 的值画出波形。然后以此波形为基础,配置 STMR_EDGE_SEL 和 STMR_DT_DAT 的值,以得到最终的需求波形。

在配置占空比的时候,会出现占空比值减死区小于零的情况或者占空比加死区大于周期的情况。当占空比减死区小于零时,得到的真实占空比为零,示例图如下:

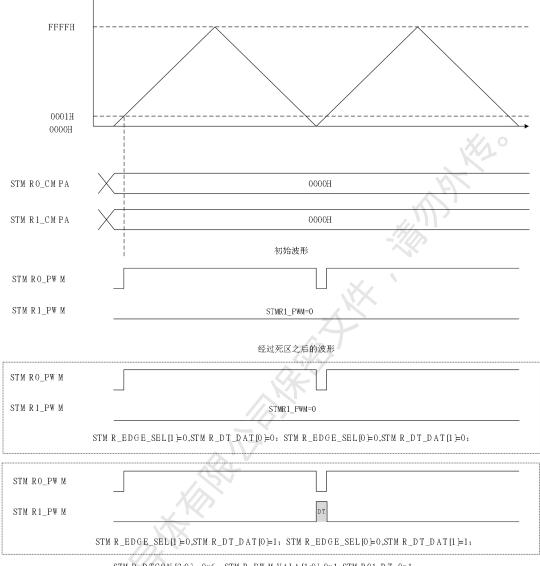


图 15-16 死区模式 6 占空比值减死区小于零时互补波形图 1

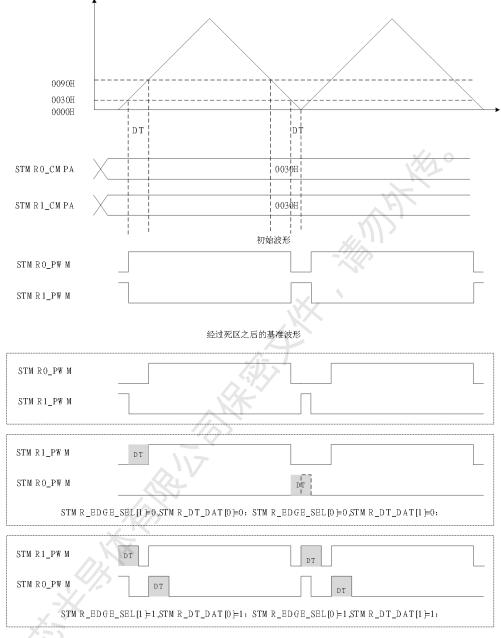
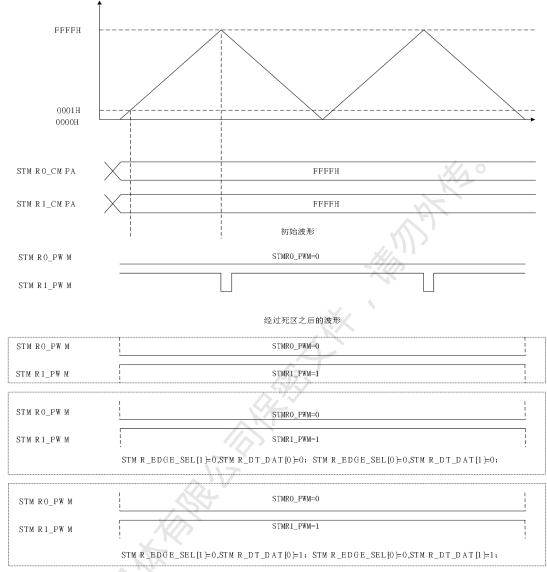



图 15-17 死区模式 0 占空比值减死区小于零时互补波形图 2

当占空比加死区大于周期时,实际占空比可以大于周期,示例图如下:

STM R_D T C O N [2:0] = 0x7 STM R_P W M V A L A [1:0] = 0x1 STM R 01_D T = 0x1 如需要輸出其他波形,请根据寄存器描述配置STM R_P W M V A L A [1:0]、STM R_E D G E_S E L [1:0]和STM R_D T_D A T [1:0]的值

图 15-18 死区模式 7 占空比加死区大于周期时互补波形图

边沿对齐模式下,死区的表现形式,请参考 STMR_DTCON 寄存器描述中死区选择模式,向下计数部分描述。

15.1.2.6. 刹车功能

可触发 PWM 刹车的信号源有如下几种:

- ▶ 外部触发端口 FB;
- ▶ ADC 结果比较输出;
- ▶比较器 0 的输出;
- ▶比较器 1 的输出;
- ▶ 软件输入;

STMRn 每个通道有独立的刹车开关,比较器有选择位以及使能位,ADC 比较和 FB 端口有独立的使能位,除软件输入刹车信号以外都可以选择极性。触发刹车后,刹车标志位STMRn_IF 刹车标志位置 1,通道的计数器使能位清零,且 PWM 输出预设的刹车数据。

如需恢复正常输出,则需要将刹车标志清零。通过 STMR_BRKDAT[6] 控制当刹车有效时是否关闭计数使能。(刹车相关的配置请参见刹车控制相关寄存器和刹车数据寄存器的说明)。

刹车配置流程:

- 1、比较器刹车
- 1) 配置 STMR BRKCON[0]选择比较器信号源;
- 2) 配置 STMR BRKCON[1]选择是否滤波,如滤波,配置 STMR BRKFILT;
- 3) 配置 STMR BRKCON[3]选择刹车有效时是否清零计数器;
- 4) 配置 STMR BRKCON[6]选择刹车信号极性;
- 5) 配置 STMR BRKDAT[6]选择刹车信号有效时,是否关闭计数使能;
- 6) 配置 STMR BRKEN[5: 0]选择刹车信号对哪一路 STMR 有效;
- 7) 配置 STMR BRKDAT[5: 0]选择对应 STMRn 在刹车信号有效时的 PWM 输出值;
- 8) 配置 STMR BRKEN[6]使能比较器刹车;
- 2、FB 刹车和 ADC 刹车配置除了不需要选择信号源,其他与比较器刹车类似,请根据寄存器描述进行相关配置;
 - 3、软件刹车
 - 1) 配置 STMR BRKCON[3]选择刹车有效时是否清零计数器;
 - 2) 配置 STMR BRKDAT[6]选择刹车信号有效时,是否关闭计数使能;
 - 3) 配置 STMR BRKEN[5: 0]选择刹车信号对哪一路 STMR 有效;
 - 4) 配置 STMR BRKDAT[5: 0]选择对应 STMRn 在刹车信号有效时的 PWM 输出值;
 - 5) 配置 STMR BRKCON[2]=1, 刹车;

15.1.2.7. 中断功能

本模块总共有 30 个中断标志,其中6个周期中断标志,6个零点中断标志,6个向上 比较中断标志,6个向下比较中断标志,6个刹车中断标志。中断标志位的产生与对应中断 使能位是否开启无关。开启 STMRn 任何一种类型的中断均需打开全局中断使能位(EA=1)、STMRn 总中断使能位 STMRn(IE1[7:3]和 IE2[0]),以及 STMRn_IE 才能成功配置 STMRn 中断功能。STMRn 的所有 5 个中断(周期、零点、向上和向下比较、刹车)共用一个中断向量入口,故进入中断服务程序后用户可通过中断标志位判断是哪种类型中断产生。

15.2. 模块框图

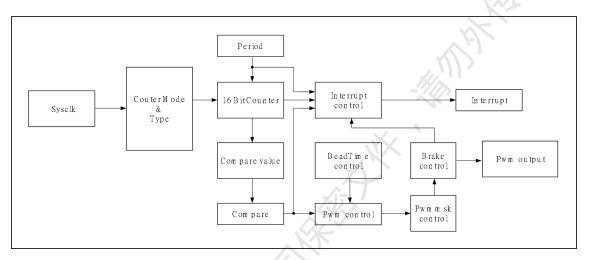


图 15- 19 Super Timer 模块框图

15.3. 寄存器列表

表 15-1 Super Timer 寄存器列表

Address	Register Name	Description
0x0E (XSFR)	STMR_EDGESEL	Super Timer Pwm Edge Select Register
0x0F (XSFR)	STMR_DTDAT	Super Timer DeadTime Pwm Output Data Register
0x10 (XSFR)	STMR_CONO	Super Timer Control O Register
0x11 (XSFR)	STMR_CNTMD	Super Timer Counter Mode Register
0x12 (XSFR)	STMR_CNTCLR	Super Timer Counter Clear Register
0x13 (XSFR)	STMR_CNTTYPE	Super Timer Counter Type Register
0x14 (XSFR)	STMR_CNTEN	Super Timer Counter Enable Register

0x15 (XSFR)	STMR_CMPCL	Super Timer Point C Comparison Value Low Register
0x16 (XSFR)	STMR_CMPCH	Super Timer Point C Comparison Value High Register
0x17 (XSFR)	STMR_LOADEN	Super Timer Load Enable Register
0x18 (XSFR)	STMR_PWMEN	Super Timer Pwm Enable Register
0x19 (XSFR)	STMR_PWMVALA	Super Timer Point A Pwm Value Register
0x1A (XSFR)	STMR_PWMVALB	Super Timer Point B Pwm Value Register
0x1B (XSFR)	STMR_PWMBEN	Super Timer Point B Pwm Enable Register
0x1C (XSFR)	STMR_PWMMSKEN	Super Timer PWM Mask Enable Register
0x1D (XSFR)	STMR_PWMMSKD	Super Timer PWM Mask Data Register
0x1E (XSFR)	STMR_BRKEN	Super Timer Brake Enable Register
0x1F (XSFR)	STMR_BRKDAT	Super Timer Brake Data Register
0x20 (XSFR)	STMR_BRKCON	Super Timer Brake Control Register
0x21 (XSFR)	STMR01_DT	Super Timer O and 1 DeadTime Register
0x22 (XSFR)	STMR23_DT	Super Timer 2 and 3 DeadTime Register
0x23 (XSFR)	STMR45_DT	Super Timer 4 and 5 DeadTime Register
0x24 (XSFR)	STMR_DTCON	Super Timer DeadTime Control Register
0x25 (XSFR)	STMR_DTEN	Super Timer DeadTime Enable Register
0x26 (XSFR)	STMRO_PRL	Super Timer O Period Low Register
0x27 (XSFR)	STMRO_PRH	Super Timer O Period High Register
0x28 (XSFR)	STMR1_PRL	Super Timer 1 Period Low Register
0x29 (XSFR)	STMR1_PRH	Super Timer 1 Period High Register
0x2A (XSFR)	STMR2_PRL	Super Timer 2 Period Low Register

0x2B (XSFR)	STMR2_PRH	Super Timer 2 Period High Register
0x2C (XSFR)	STMR3_PRL	Super Timer 3 Period Low Register
0x2D (XSFR)	STMR3_PRH	Super Timer 3 Period High Register
0x2E (XSFR)	STMR4_PRL	Super Timer 4 Period Low Register
0x2F (XSFR)	STMR4_PRH	Super Timer 4 Period High Register
0x30 (XSFR)	STMR5_PRL	Super Timer 5 Period Low Register
0x31 (XSFR)	STMR5_PRH	Super Timer 5 Period High Register
0x32 (XSFR)	STMRO_CMPAL	Super Timer O Point A Comparison Value Low Register
0x33 (XSFR)	STMRO_CMPAH	Super Timer O Point A Comparison Value High Register
0x34 (XSFR)	STMRO_CMPBL	Super Timer O Point B Comparison Value Low Register
0x35 (XSFR)	STMRO_CMPBH	Super Timer O Point B Comparison Value High Register
0x36 (XSFR)	STMR1_CMPAL	Super Timer 1 Point A Comparison Value Low Register
0x37 (XSFR)	STMR1_CMPAH	Super Timer 1 Point A Comparison Value High Register
0x38 (XSFR)	STMR1_CMPBL	Super Timer 1 Point B Comparison Value Low Register
0x39 (XSFR)	STMR1_CMPBH	Super Timer 1 Point B Comparison Value High Register
0x3A (XSFR)	STMR2_CMPAL	Super Timer 2 Point A Comparison Value Low Register
0x3B (XSFR)	STMR2_CMPAH	Super Timer 2 Point A Comparison Value High Register

0x3C (XSFR)	STMR2_CMPBL	Super Timer 2 Point B Comparison Value Low Register
0x3D (XSFR)	STMR2_CMPBH	Super Timer 2 Point B Comparison Value High Register
Ox3E (XSFR)	STMR3_CMPAL	Super Timer 3 Point A Comparison Value Low Register
0x3F (XSFR)	STMR3_CMPAH	Super Timer 3 Point A Comparison Value High Register
0x40 (XSFR)	STMR3_CMPBL	Super Timer 3 Point B Comparison Value Low Register
0x41 (XSFR)	STMR3_CMPBH	Super Timer 3 Point B Comparison Value High Register
0x42 (XSFR)	STMR4_CMPAL	Super Timer 4 Point A Comparison Value Low Register
0x43 (XSFR)	STMR4_CMPAH	Super Timer 4 Point A Comparison Value High Register
0x44 (XSFR)	STMR4_CMPBL	Super Timer 4 Point B Comparison Value Low Register
0x45 (XSFR)	STMR4_CMPBH	Super Timer 4 Point B Comparison Value High Register
0x46 (XSFR)	STMR5_CMPAL	Super Timer 5 Point A Comparison Value Low Register
0x47 (XSFR)	STMR5_CMPAH	Super Timer 5 Point A Comparison Value High Register
0x48 (XSFR)	STMR5_CMPBL	Super Timer 5 Point B Comparison Value Low Register
0x49 (XSFR)	STMR5_CMPBH	Super Timer 5 Point B Comparison Value High Register

Ox4A (XSFR)	STMRO_CNTL	Super Timer O Counter Low Register
0x4B (XSFR)	STMRO_CNTH	Super Timer O Counter High Register
0x4C (XSFR)	STMR1_CNTL	Super Timer 1 Counter Low Register
0x4D (XSFR)	STMR1_CNTH	Super Timer 1 Counter High Register
0x4E (XSFR)	STMR2_CNTL	Super Timer 2 Counter Low Register
0x4F (XSFR)	STMR2_CNTH	Super Timer 2 Counter High Register
0x50 (XSFR)	STMR3_CNTL	Super Timer 3 Counter Low Register
0x51 (XSFR)	STMR3_CNTH	Super Timer 3 Counter High Register
0x52 (XSFR)	STMR4_CNTL	Super Timer 4 Counter Low Register
0x53 (XSFR)	STMR4_CNTH	Super Timer 4 Counter High Register
0x54 (XSFR)	STMR5_CNTL	Super Timer 5 Counter Low Register
0x55 (XSFR)	STMR5_CNTH	Super Timer 5 Counter High Register
0x56 (XSFR)	STMRO_PSC	Super Timer O Prescaler Register
0x57 (XSFR)	STMR1_PSC	Super Timer 1 Prescaler Register
0x58 (XSFR)	STMR2_PSC	Super Timer 2 Prescaler Register
0x59 (XSFR)	STMR3_PSC	Super Timer 3 Prescaler Register
0x5A (XSFR)	STMR4_PSC	Super Timer 4 Prescaler Register
0x5B (XSFR)	STMR5_PSC	Super Timer 5 Prescaler Register
0x5C (XSFR)	STMRO_IE	Super Timer O Interrupt Enable Register
0x5D (XSFR)	STMR1_IE	Super Timer 1 Interrupt Enable Register
0x5E (XSFR)	STMR2_IE	Super Timer 2 Interrupt Enable Register
0x5F (XSFR)	STMR3_IE	Super Timer 3 Interrupt Enable Register
0x60 (XSFR)	STMR4_IE	Super Timer 4 Interrupt Enable Register
0x61 (XSFR)	STMR5_IE	Super Timer 5 Interrupt Enable Register

0x62 (XSFR)	STMRO_IF	Super Timer O Interrupt Flag Register
0x63 (XSFR)	STMR1_IF	Super Timer 1 Interrupt Flag Register
0x64 (XSFR)	STMR2_IF	Super Timer 2 Interrupt Flag Register
0x65 (XSFR)	STMR3_IF	Super Timer 3 Interrupt Flag Register
0x66 (XSFR)	STMR4_IF	Super Timer 4 Interrupt Flag Register
0x67 (XSFR)	STMR5_IF	Super Timer 5 Interrupt Flag Register
0x68 (XSFR)	STMR_BRKFILT	Super Timer Brake Filter Number Register

15.4. 寄存器详细说明

15.4.1. **STMR_CON0**

Addr = 0x10 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7		STMR1/STMR3/STMR5 群组功能使能		
	STMRGP1	0x0: 群组功能不使能	RW	0x0
		0x1: 群组功能使能		
		STMRO/STMR2/STMR4 群组功能使能		
6	STMRGPO	0x0: 群组功能不使能	RW	0x0
	1/2	0x1: 群组功能使能		
5: 4		STMR4/STMR5 模式选择		
	,×5	0x0: STMR4 和 STMR5 为独立模式		
	ST45SYNCMP	0x1: STMR4 和 STMR5 为同步模式	RW	0x0
	-12%	0x2: STMR4 和 STMR5 为互补模式		
	%	0x3: 保留		
3: 2	7"	STMR2/STMR3 模式选择		
		0x0: STMR2 和 STMR3 为独立模式		
	ST23SYNCMP	0x1: STMR2 和 STMR3 为同步模式	RW	0x0
		0x2: STMR2 和 STMR3 为互补模式		
		0x3: 保留		
1: 0	ST01SYNCMP	STMRO/STMR1 模式选择	RW	0x0

0x0: STMR0 和 STMR1 为独立模式	
Ox1: STMRO 和 STMR1 为同步模式	ı
Ox2: STMRO 和 STMR1 为互补模式	ı
0x3: 保留	

15.4.2. **STMR_CNTMD**

Addr = 0x11 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		自动装载点选择		
		0x0: 计数至0时自动装载		
7	LOADSEL	0x1: 计数至周期自动装载	RW	0x0
		注意: 边沿模式没有周期点,只有零点,所以边缘		
		模式只能选择零点更新		
		比较值C点选择位		
6	CMPCSEL	0x0: 计数方向向上时,比较值 C 有效	RW	0x0
		0x1: 计数方向向下时,比较值 C 有效		
		STMR5 计数模式选择		
5	STMR5CNTM	0x0: 单次计数模式	RW	0x0
		0x1: 连续计数模式		
		STMR4 计数模式选择		
4	STMR4CNTM	0x0: 单次计数模式	RW	0x0
		0x1: 连续计数模式		
		STMR3 计数模式选择		
3	STMR3CNTM	0x0: 单次计数模式	RW	0x0
	1/5	0x1: 连续计数模式		
	1-17	STMR2 计数模式选择		
2	STMR2CNTM	0x0: 单次计数模式	RW	0x0
	ŽI.	0x1: 连续计数模式		
		STMR1 计数模式选择		
1	STMR1CNTM	0x0: 单次计数模式	RW	0x0
		0x1: 连续计数模式		
	amun a aver-	STMRO 计数模式选择	D	
0	STMROCNTM	0x0: 单次计数模式	RW	0x0

AL AL AL MILLING IN	
0x1: 连续计数模式	

15.4.3. STMR_CNTCLR

Addr = 0x12 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	_	_	S	_
5	STMR5CNTCLR	STMR5 计数清零 写 1 清零,写 0 无效	WO	
4	STMR4CNTCLR	STMR4 计数清零 写 1 清零,写 0 无效	WO	-
3	STMR3CNTCLR	STMR3 计数清零 写 1 清零,写 0 无效	WO	_
2	STMR2CNTCLR	STMR2 计数清零 写 1 清零,写 0 无效	WO	_
1	STMR1CNTCLR	STMR1 计 数清零 写 1 清零,写 0 无效	WO	-
0	STMROCNTCLR	STMR0 计数清零 写 1 清零,写 0 无效	WO	-

15.4.4. STMR_CNTTYPE

Addr = 0x13 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	-1(2-)	STMR_CNTEN[7]硬件置1使能		
7	TMR1EN	0x0: 硬件置 1 无效;	RW	0x0
7	IMRIEN	0x1: 硬件置 1 使能, STMRO 计数值等于 0 时,	ĸw	UXU
		STMR_CNTEN[7]硬件置 1;		
		STMR_CNTEN[6]硬件置1使能		
6	TMDOEN	0x0: 硬件置 1 无效;	DW	0.0
	TMROEN	0x1: 硬件置 1 使能, STMRO 计数值等于 0 时,	RW	0x0
		STMR_CNTEN[6]硬件置 1;		

		STMR5 计数类型选择		
5	STMR5CNTTP	0x0: 边沿对齐计数	RW	0x0
		0x1: 中心对齐计数		
		STMR4 计数类型选择		
4	STMR4CNTTP	0x0: 边沿对齐计数	RW	0x0
		0x1: 中心对齐计数		
		STMR3 计数类型选择		
3	STMR3CNTTP	0x0: 边沿对齐计数	RW	0x0
		0x1: 中心对齐计数		
		STMR2 计数类型选择		
2	STMR2CNTTP	0x0: 边沿对齐计数	RW	0x0
		0x1: 中心对齐计数		
		STMR1 计数类型选择		
1	STMR1CNTTP	0x0: 边沿对齐计数	RW	0x0
		0x1: 中心对齐计数		
		STMR0 计数类型选择		
0	STMROCNTTP	0x0: 边沿对齐计数	RW	0x0
		0x1: 中心对齐计数		

15.4.5. STMR_CNTEN

Addr = 0x14 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	M/S	TMR1 计数使能		
7	TMR1CNTEN	0x0: 计数不使能	RW	0x0
, i	/	0x1: 计数使能		
	λ,	TMRO 计数使能		
6	TMROCNTEN	0x0: 计数不使能	RW	0x0
		0x1: 计数使能		
		STMR5 计数使能		
5	STMR5CNTEN	0x0: 计数不使能	RW	0x0
		0x1: 计数使能		

		STMR4 计数使能		
4	STMR4CNTEN	0x0: 计数不使能	RW	0x0
		0x1: 计数使能		
		STMR3 计数使能		
3	STMR3CNTEN	0x0: 计数不使能	RW	0x0
		0x1: 计数使能		
		STMR2 计数使能		
2	STMR2CNTEN	0x0: 计数不使能	RW	0x0
		0x1: 计数使能		
		STMR1 计数使能		
1	STMR1CNTEN	0x0: 计数不使能	RW	0x0
		0x1: 计数使能		
		STMRO 计数使能		
0	STMROCNTEN	0x0: 计数不使能	RW	0x0
		0x1: 计数使能		

		0.11: 计数区形				
	15.4.6. STMR_LOADEN Addr = 0x17 (XSFR)					
Bit(s)	Name	Description	R/W	Reset		
7: 6	_	- XV	-	0		
5	STMR5LOADEN	STMR5 自动装载使能 0x0: 自动装载不使能 0x1: 自动装载使能 0x1: 自动装载使能 Note: 每次写周期和比较值影子寄存器后,需将此 位置 1,到装载点时新值才会有效载入!目的是为了保护写影子寄存器中途未完成就到了装载点自动 更新导致错误装载的发生!	RW	0x0		
4	STMR4LOADEN	STMR4 自动装载使能 0x0: 自动装载不使能 0x1: 自动装载使能 0x1: 自动装载使能 Note: 每次写周期和比较值影子寄存器后,需将此 位置 1,到装载点时新值才会有效载入! 目的是为 了保护写影子寄存器中途未完成就到了装载点自动	RW	0x0		

		更新导致错误装载的发生!		
		STMR3 自动装载使能		
		0x0: 自动装载不使能		
		0x1: 自动装载使能		
3	STMR3LOADEN	Note:每次写周期和比较值影子寄存器后,需将此	RW	0x0
		位置1,到装载点时新值才会有效载入!目的是为		
		了保护写影子寄存器中途未完成就到了装载点自动		
		更新导致错误装载的发生!	120	
		STMR2 自动装载使能		
		0x0: 自动装载不使能		
		0x1: 自动装载使能		
2	STMR2LOADEN	Note: 每次写周期和比较值影子寄存器后, 需将此	RW	0x0
		位置 1, 到装载点时新值才会有效载入! 目的是为		
		了保护写影子寄存器中途未完成就到了装载点自动		
		更新导致错误装载的发生!		
		STMR1 自动装载使能		
		0x0: 自动装载不使能		
		0x1: 自动装载使能		
1	STMR1LOADEN	Note: 每次写周期和比较值影子寄存器后,需将此	RW	0x0
		位置1,到装载点时新值才会有效载入!目的是为		
		了保护写影子寄存器中途未完成就到了装载点自动		
		更新导致错误装载的发生!		
		STMR0 自动装载使能		
		0x0: 自动装载不使能		
	X=5	0x1: 自动装载使能		
0	STMROLOADEN	Note:每次写周期和比较值影子寄存器后,需将此	RW	0x0
	1/2/2	位置1,到装载点时新值才会有效载入!目的是为		
	X-Y	了保护写影子寄存器中途未完成就到了装载点自动		
	A ₁	更新导致错误装载的发生!		

15.4.7. **STMR_CMPCL**

Addr = 0x15 (XSFR)

Bit(s) Name	Description	R/W	Reset
-------------	-------------	-----	-------

7: 0 STMR	STMRCMPCL	比较值 C 点低八位	WO	1
	STIMOM CE	Note: 比较值 C 点只与 STMRO 的计数进行比较	**	

15.4.8. **STMR_CMPCH**

Addr = 0x16 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	STMRCMPCH	比较值C点高八位	WO	
7: 0	SIMICMFCII	Note: 比较值 C 点只与 STMRO 的计数进行比较	WO	

15.4.9. **STMR_PWMEN**

Addr = 0x18 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	_	- AD 7	-	0
5	STMR5PWMEN	STMR5 PWM 输出使能 0x0: 不使能 0x1: 使能	RW	0x0
4	STMR4PWMEN	STMR4 PWM 输出使能 0x0: 不使能 0x1: 使能	RW	0x0
3	STMR3PWMEN	STMR3 PWM 输出使能 0x0: 不使能 0x1: 使能	RW	0x0
2	STMR2PWMEN	STMR2 PWM 输出使能 0x0: 不使能 0x1: 使能	RW	0x0
1	STMR1PWMEN	STMR1 PWM 输出使能 0x0: 不使能 0x1: 使能	RW	0x0
0	STMROPWMEN	STMRO PWM 输出使能 0x0: 不使能 0x1: 使能	RW	0x0

15.4.10. **STMR_PWMVALA**

Addr = 0x19 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	_	1	ı	0x0
5	STMR5PWMVA	STMR5 PWM 输出值 0x0: 计数 CNT 小于比较值 A, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 A, PWM 输出 1, 小于输出 0;	RW	0x0
4	STMR4PWMVA	STMR4 PWM 输出值 0x0: 计数 CNT 小于比较值 A, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 A, PWM 输出 1, 小于输出 0;	RW	0x0
3	STMR3PWMVA	STMR3 PWM 输出值 0x0: 计数 CNT 小于比较值 A, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 A, PWM 输出 1, 小于输出 0;	RW	0x0
2	STMR2PWMVA	STMR2 PWM 输出值 0x0: 计数 CNT 小于比较值 A, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 A, PWM 输出 1, 小于输出 0;	RW	0x0
1 🐧	STMR1PWMVA	STMR1 PWM 输出值 0x0: 计数 CNT 小于比较值 A, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 A, PWM 输出 1, 小于输出 0;	RW	0x0
0	STMROPWMVA	STMRO PWM 输出值 0x0: 计数 CNT 小于比较值 A, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 A, PWM 输出 1, 小	RW	0x0

	于输出 0;	

15.4.11. **STMR_PWMVALB**

Addr = 0x1A (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	_	_	5	0x0
5	STMR5PWMVB	STMR5 比较值 B 有效 PWM 输出值 0x0: 计数 CNT 小于比较值 B, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 B, PWM 输出 1, 小于输出 0;	RW	0x0
4	STMR4PWMVB	STMR4 比较值 B 有效 PWM 输出值 0x0: 计数 CNT 小于比较值 B, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 B, PWM 输出 1, 小于输出 0;	RW	0x0
3	STMR3PWMVB	STMR3 比较值 B 有效 PWM 输出值 0x0: 计数 CNT 小于比较值 B, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 B, PWM 输出 1, 小于输出 0;	RW	0x0
2	STMR2PWMVB	STMR2 比较值 B 有效 PWM 输出值 0x0: 计数 CNT 小于比较值 B, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 B, PWM 输出 1, 小于输出 0;	RW	0x0
1	STMR1PWMVB	STMR1 比较值 B 有效 PWM 输出值 0x0: 计数 CNT 小于比较值 B, PWM 输出 1, 大于等于输出 0; 0x1: 计数 CNT 大于等于比较值 B, PWM 输出 1, 小于输出 0;	RW	0x0
0	STMROPWMVB	STMRO 比较值 B 有效 PWM 输出值	RW	0x0

	0x0: 计数 CNT 小于比较值 B, PWM 输出 1, 大于等	
	于输出 0;	
	0x1: 计数 CNT 大于等于比较值 B, PWM 输出 1, 小	
	于输出 0;	

15.4.12. **STMR_PWMBEN**

Addr = 0x1B (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	_	- Hin	Ι	0x0
		STMR5 比较值 B PWM 输出使能		
5	STMR5PWMBEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMR4 比较值 B PWM 输出使能		
4	STMR4PWMBEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMR3 比较值 B PWM 输出使能		
3	STMR3PWMBEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMR2 比较值 B PWM 输出使能		
2	STMR2PWMBEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMR1 比较值 B PWM 输出使能		
1	STMR1PWMBEN	0x0: 不使能	RW	0x0
	1/5	0x1: 使能		
	-16-3	STMRO 比较值 B PWM 输出使能		
0	STMROPWMBEN	0x0: 不使能	RW	0x0
	71.	0x1: 使能		

15.4.13. STMR_PWMMSKEN

Addr = 0x1C (XSFR)

Bit(s) N	Name	Description	R/W	Reset
----------	------	-------------	-----	-------

7: 6	_	-	_	0x0
		STMR5 PWM 掩码输出使能		
5	STMR5PWMMSKEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMR4 PWM 掩码输出使能		
4	STMR4PWMMSKEN	0x0: 不使能	RW	0x0
		0x1: 使能	/	
		STMR3 PWM 掩码输出使能	K7	
3	STMR3PWMMSKEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMR2 PWM 掩码输出使能		
2	STMR2PWMMSKEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMR1 PWM 掩码输出使能		
1	STMR1PWMMSKEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMRO PWM 掩码输出使能		
0	STMROPWMMSKEN	0x0: 不使能	RW	0x0
		0x1: 使能		

15.4.14. **STMR_PWMMSKD**

Addr = 0x1D (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	- 75	_	Ι	0x0
5	STMR5PWMMSKD	STMR5 PWM 掩码输出值 0x0: 掩码输出 0	RW	0x0
	X-Y	0x1: 掩码输出 1		
	7"	STMR4 PWM 掩码输出值		
4	STMR4PWMMSKD	0x0: 掩码输出 0	RW	0x0
		0x1: 掩码输出 1		
		STMR3 PWM 掩码输出值		
3	STMR3PWMMSKD	0x0: 掩码输出 0	RW	0x0
		0x1: 掩码输出 1		

		STMR2 PWM 掩码输出值		
2	STMR2PWMMSKD	0x0: 掩码输出 0	RW	0x0
		0x1: 掩码输出 1		
		STMR1 PWM 掩码输出值		
1	STMR1PWMMSKD	0x0: 掩码输出 0	RW	0x0
		0x1: 掩码输出 1		
		STMRO PWM 掩码输出值	// 0	
0	STMROPWMMSKD	0x0: 掩码输出 0	RW	0x0
		0x1: 掩码输出 1		

15.4.15. **STMR_BRKEN**

Addr = 0x1E (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	BRKFBEN	FB 端口刹车使能 0x0: 不使能 0x1: 使能	RW	0x0
6	BRKCOMPEN	比较器刹车使能 0x0: 不使能 0x1: 使能	RW	0x0
5	STMR5BRKEN	STMR5 刹车使能 0x0: 不使能 0x1: 使能	RW	0x0
4	STMR4BRKEN	STMR4 刹车使能 0x0: 不使能 0x1: 使能	RW	0x0
3	STMR3BRKEN	STMR3 刹车使能 0x0: 不使能 0x1: 使能	RW	0x0
2	STMR2BRKEN	STMR2 刹车使能 0x0: 不使能 0x1: 使能	RW	0x0
1	STMR1BRKEN	STMR1 刹车使能 0x0: 不使能	RW	0x0

		0x1: 使能		
		STMRO 刹车使能		
0	STMROBRKEN	0x0: 不使能	RW	0x0
		0x1: 使能		

15.4.16. **STMR_BRKCON**

Addr = 0x20 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		FB 端口刹车极性		
7	BRKFB_POL	0x0: 刹车信号 0 有效	RW	0x1
		0x1: 刹车信号 1 有效		
		比较器刹车极性		
6	BRKCOMPPOL	0x0: 刹车信号 0 有效	RW	0x1
		0x1: 刹车信号 1 有效		
		ADC 刹车极性		
5	BRKADCPOL	0x0: 刹车信号 0 有效	RW	0x1
		0x1: 刹车信号 1 有效		
		ADC 刹车使能		
4	BRKADCEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		刹车有效计数寄存器清零使能		
3	BRKCNTCLREN	0x0: 不使能	RW	0x0
		0x1: 使能		
	X55	软件刹车信号		
2	BRKSOF	0x0: 不刹车	RW	0x0
	15/2	0x1: 刹车		
24	/	ADC/比较器/FB 刹车滤波使能		
1	BRKFILTEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		比较器刹车选择		
0	BRKCOMPSEL	0x0: 比较器 0 刹车有效	RW	0x0
		0x1: 比较器 1 刹车有效		

15.4.17. **STMR_BRKDAT**

Addr = 0x1F (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	_	_	1	0x0
		STMR5 刹车有效 PWM 输出值		
5	STMR5BRKDAT	0x0: 刹车有效时 PWM 输出 0	RW	0x0
		0x1: 刹车有效时 PWM 输出 1		
		STMR4 刹车有效 PWM 输出值		
4	STMR4BRKDAT	0x0: 刹车有效时 PWM 输出 0	RW	0x0
		0x1: 刹车有效时 PWM 输出 1		
		STMR3 刹车有效 PWM 输出值		
3	STMR3BRKDAT	0x0: 刹车有效时 PWM 输出 0	RW	0x0
		0x1: 刹车有效时 PWM 输出 1		
		STMR2 刹车有效 PWM 输出值		
2	STMR2BRKDAT	0x0: 刹车有效时 PWM 输出 0	RW	0x0
		0x1: 刹车有效时 PWM 输出 1		
		STMR1 刹车有效 PWM 输出值		
1	STMR1BRKDAT	0x0: 刹车有效时 PWM 输出 0	RW	0x0
		0x1: 刹车有效时 PWM 输出 1		
		STMRO 刹车有效 PWM 输出值		
0	STMROBRKDAT	0x0: 刹车有效时 PWM 输出 0	RW	0x0
		0x1: 刹车有效时 PWM 输出 1		

15.4.18. **STMR_BRKFILT**

Addr = 0x68 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	7	I	1	0x0
5: 0		刹车滤波时长	RW	00
	STMRBRKFILTNUM	滤波时长为 STMRBRKFILTNUM + 4 个 CLK		0x0

15.4.19. **STMR01_DT**

Addr = 0x21 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	STMRO1_DT	STMRO/STMR1 死区时间寄存器	WO	_

15.4.20. **STMR23_DT**

Addr = 0x22 (XSFR)

İ	Bit(s)	Name	Description		R/W	Reset
ı	7 : 0	STMR23DT	STMR2/STMR3 死区时间寄存器	-7/1	WO	1

15.4.21. **STMR45_DT**

Addr =0x23 (XSFR)

Bit(s)	Name	Description	R/W	Reset		
7: 0	STMR45DT	STMR4/STMR5 死区时间寄存器	WO	_		
15.4.	15.4.22. STMR_DTCON					

Addr = 0x24 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	-	_	_	0x0
	×-7×	STMR2/STMR3 死区模式选择		
	X 5	0x0: STMR2 向上计数时比较点+死区时间,向下		
	STMR23DTTYPE	计数时无死区; STMR3 向上计数时无死区, 向下	RW	
		计数时比较点-死区时间		
5: 3		0x1: STMR2 向下计数时比较点+死区时间,向上		0x0
0: 3		计数时无死区; STMR3 向下计数时无死区, 向上		UXU
		计数时比较点-死区时间		
		0x2: STMR2 向上计数时比较点-死区时间,向下		
		计数时无死区; STMR3 向上计数时无死区, 向下		
		计数时比较点+死区时间		

	-				
		0x3: STMR2 向下计数时比较点-死区时间,	向上		
		计数时无死区; STMR3 向下计数时无死区,	向上		
		计数时比较点+死区时间			
		0x4: STMR2 向下和向上计数时比较点-死区	时间,		
		STMR3 无死区			
		0x5: STMR2 向下和向上计数时比较点+死区	时间,		
		STMR3 无死区			
		0x6: STMR2 无死区,STMR3 向下和向上计数	対 比	12°	
		较点-死区时间	197		
		0x7: STMR2 无死区,STMR3 向下和向上计数	対比		
		较点+死区时间	117		
		STMRO/STMR1 死区模式选择			
		0x0: STMRO 向上计数时比较点+死区时间,	向下		
		计数时无死区; STMR1 向上计数时无死区,	向下		
		计数时比较点-死区时间			
		0x1: STMRO 向下计数时比较点+死区时间,	向上		
		计数时无死区;STMR1 向下计数时无死区,	向上		
		计数时比较点-死区时间			
		0x2: STMRO 向上计数时比较点-死区时间,	向下		
		计数时无死区;STMR1 向上计数时无死区,	- 1		
		计数时比较点+死区时间			
2: 0	STMR01DTTYPE	0x3: STMRO 向下计数时比较点-死区时间,	向上	RW	0x0
	///		- 1		
	V/-				
	*-7X		 		
			1, 1,		
	135		 时间		
-	-1(5/3)				
	E,		好时比		
			村比		
		较点+死区时间	V61 NR		
2: 0	STMR01DTTYPE	STMRO/STMR1 死区模式选择 0x0: STMR0 向上计数时比较点+死区时间,计数时无死区; STMR1 向上计数时无死区,计数时比较点-死区时间 0x1: STMR0 向下计数时比较点+死区时间,计数时无死区; STMR1 向下计数时无死区,计数时比较点-死区时间 0x2: STMR0 向上计数时比较点-死区时间, 计数时无死区; STMR1 向上计数时无死区,计数时比较点+死区时间 0x3: STMR0 向下计数时比较点-死区时间, 计数时无死区; STMR1 向下计数时无死区,计数时无死区,STMR1 向下计数时无死区,计数时比较点+死区时间 0x4: STMR0 向下和向上计数时比较点-死区STMR1 无死区 0x5: STMR0 向下和向上计数时比较点+死区STMR1 无死区 0x6: STMR0 无死区,STMR1 向下和向上计数较点-死区对流1 无死区	向 向向 向向 时 时 时下 上上 下下 上上 , , 比	RW	0x0

15.4.23. **STMR_DTEN**

Addr = 0x25 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	_	-	_	0x0
5: 3	STMR45DTTYPE	STMR4/STMR5 死区模式选择 0x0: STMR4 向上计数时比较点+死区时间,向下计数时无死区; STMR5 向上计数时无死区,向下计数时比较点-死区时间 0x1: STMR4 向下计数时比较点+死区时间,向上计数时无死区; STMR5 向下计数时无死区, 向上计数时比较点-死区时间 0x2: STMR4 向上计数时比较点-死区时间,向下计数时无死区; STMR5 向上计数时无死区,向下计数时比较点+死区时间 0x3: STMR4 向下计数时比较点-死区时间,向上计数时比较点+死区时间 0x4: STMR4 向下计数时比较点-死区时间,向上计数时比较点+死区时间 0x4: STMR4 向下和向上计数时比较点-死区时间,STMR5 无死区 0x5: STMR4 向下和向上计数时比较点+死区时间,STMR5 无死区 0x6: STMR4 无死区,STMR5 向下和向上计数时比较点-死区时间,STMR5 无死区	RW	0x0
2	STMR45DTEN	STMR4/STMR5 死区使能 0x0: 不使能 0x1: 使能	RW	0x0
1	STMR23DTEN	STMR2/STMR3 死区使能 0x0: 不使能 0x1: 使能	RW	0x0
0	STMR01DTEN	STMR0/STMR1 死区使能 0x0: 不使能	RW	0x0

0x1: 使能

15.4.24. STMR_EDGESEL

Addr = 0x0E (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	_	_		0x0
		STMR5 PWM 边沿选择	NA.	
5	STMR5EDGESEL	OxO: STMR5 PWM 下降沿触发 STMR4 死区事件	RW	0x0
		0x1: STMR5 PWM 上升沿触发 STMR4 死区事件		
		STMR4 PWM 边沿选择		
4	STMR4EDGESEL	OxO: STMR4 PWM 下降沿触发 STMR5 死区事件	RW	0x0
		Ox1: STMR4 PWM 上升沿触发 STMR5 死区事件		
		STMR3 PWM 边沿选择		
3	STMR3EDGESEL	0x0: STMR3 PWM 下降沿触发 STMR2 死区事件	RW	0x0
		Ox1: STMR3 PWM 上升沿触发 STMR2 死区事件		
		STMR2 PWM 边沿选择		
2	STMR2EDGESEL	0x0: STMR2 PWM 下降沿触发 STMR3 死区事件	RW	0x0
		Ox1: STMR2 PWM 上升沿触发 STMR3 死区事件		
		STMR1 PWM 边沿选择		
1	STMR1EDGESEL	0x0: STMR1 PWM 下降沿触发 STMR0 死区事件	RW	0x0
		0x1: STMR1 PWM 上升沿触发 STMR0 死区事件		
	4/2	STMRO PWM 边沿选择		
0	STMROEDGESEL	OxO: STMRO PWM 下降沿触发 STMR1 死区事件	RW	0x0
	75	Ox1: STMRO PWM 上升沿触发 STMR1 死区事件		

15.4.25. **STMR_DTDAT**

Addr = 0x0F (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 6	_		1	0x0
		STMR5 死区事件触发后,PWM 死区时间内输出值		
5	STMR5DTDAT	0x0: STMR5 PWM 死区时间内输出 0	RW	0x0
		0x1: STMR5 PWM 死区时间内输出 1		

		STMR4 死区事件触发后,PWM 死区时间内输出值		
4	STMR4DTDAT	0x0: STMR4 PWM 死区时间内输出 0	RW	0x0
		0x1: STMR4 PWM 死区时间内输出 1		
		STMR3 死区事件触发后,PWM 死区时间内输出值		
3	STMR3DTDAT	0x0: STMR3 PWM 死区时间内输出 0	RW	0x0
		0x1: STMR3 PWM 死区时间内输出 1		
		STMR2 死区事件触发后,PWM 死区时间内输出值	11.0	
2	STMR2DTDAT	0x0: STMR2 PWM 死区时间内输出 0	RW	0x0
		0x1: STMR2 PWM 死区时间内输出 1		
		STMR1 死区事件触发后,PWM 死区时间内输出值		
1	STMR1DTDAT	0x0: STMR1 PWM 死区时间内输出 0	RW	0x0
		0x1: STMR1 PWM 死区时间内输出 1		
		STMRO 死区事件触发后,PWM 死区时间内输出值		
0	STMRODTDAT	0x0: STMRO PWM 死区时间内输出 0	RW	0x0
		0x1: STMRO PWM 死区时间内输出 1		

15.4.26. STMRn_IE (n=0~5)

Addr = 0x5C/0x5D/0x5E/0x5F/0x60/0x61 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_		-	0x0
	//)	STMRn 刹车中断使能		
4	STMRNBRKIE	0x0: 不使能	RW	0x0
		0x1: 使能		
	, X57	STMRn 计数值等于比较值 B 中断使能		
3	STMRNCMPBIE	0x0: 不使能	RW	0x0
	-12-3	0x1: 使能		
N.	K.	STMRn 计数值等于比较值 A 中断使能		
2	STMRNCMPAIE	0x0: 不使能	RW	0x0
		0x1: 使能		
		STMRn 计数值等于 0 中断使能		
1	STMRNUDIE	0x0: 不使能	RW	0x0
		0x1: 使能		
0	STMRNOVIE	STMRn 计数值等于周期中断使能	RW	0x0

	0x0: 不使能	
	0x1: 使能	

15.4.27. **STMRn_IF** (**n=0~5**)

Addr = 0x62/0x63/0x64/0x65/0x66/0x67 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_		0x0
		STMRn 刹车有效标志		
4	STMRNBRKIF	0x0: 刹车无效或没有发生	RW	0x0
		0x1: 刹车已经发生且有效		
		STMRn 计数等于比较值 B 有效标志		
3	STMRNCMPBIF	0x0: 无效或计数不等于比较值 B	RW	0x0
		0x1: 计数等于比较值 B 已经发生且有效		
		STMRn 计数等于比较值 A 有效标志		
2	STMRNCMPAIF	0x0: 无效或计数不等于比较值 A	RW	0x0
		0x1: 计数等于比较值 A 已经发生且有效		
		STMRn 计数等于 0 有效标志		
1	STMRNUDIF	0x0: 无效或计数不等于 0	RW	0x0
		0x1: 计数等于 0 已经发生且有效		
		STMRn 计数等于周期有效标志		
		0x0: 无效或计数不等于周期		
0	STMRNOVIF	0x1: 计数等于周期已经发生且有效	RW	0x0
		Note: 边沿对齐模式时,计数等于周期无中断标		
	X-5	志		

15.4.28. **STMRn_PRL** (n=0~5)

Addr = 0x26/0x28/0x2A/0x2C/0x2E/0x30 (XSFR)

ĺ	Bit(s)	Name	Description	R/W	Reset
	7 : 0	STMRNPRL	STMRn 周期低八位寄存器	WO	-

15.4.29. **STMRn_PRH** (n=0~5)

Addr = 0x27/0x29/0x2B/0x2D/0x2F/0x31 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	STMRNPRH	STMRn 周期高八位寄存器	WO	_

15.4.30. **STMRn_CMPAL** (n=0~5)

Addr = 0x32/0x36/0x3A/0x3E/0x42/0x46 (XSFR)

Bit(s)	Name	Description		R/W	Reset
7: 0	STMRNCMPAL	STMRn 比较值 A 点低八位寄存器	-24	WO	-

15.4.31. **STMRn_CMPAH** (n=0~5)

Addr = 0x33/0x37/0x3B/0x3F/0x43/0x47 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	STMRNCMPAH	STMRn 比较值 A 点高八位寄存器	WO	_

15.4.32. **STMRn_CMPBL** (n=0~5)

Addr = 0x34/0x38/0x3C/0x40/0x44/0x48 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	STMRNCMPBL	STMRn 比较值 B 点低八位寄存器	WO	-

15.4.33. **STMRn_CMPBH** (n=0-5)

Addr = 0x35/0x39/0x3D/0x41/0x45/0x49 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	STMRNCMPBH	STMRn 比较值 B 点高八位寄存器	WO	_

15.4.34. **STMRn_PSC** (n=0~5)

Addr = 0x56/0x57/0x58/0x59/0x5A/0x5B (XSFR)

İ	Bit(s)	Name	Description	R/W	Reset
	7: 0	STMRNPSC	STMRn 计数分频寄存器	WO	_

15.4.35. STMRn_CNTL (n=0~5)

Addr = 0x4A/0x4C/0x4E/0x50/0x52/0x54 (XSFR)

İ	Bit(s)	Name	Description	R/W	Reset
I	7: 0	STMRNCNTL	STMRn 计数低八位寄存器	WO	-

15.4.36. **STMRn_CNTH (n=0~5)**

Addr = 0x4B/0x4D/0x4F/0x51/0x53/0x55 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 0	STMRNCNTH	STMRn 计数高八位寄存器	WO	-

15.5. 使用流程说明

- 1) 选择PWM模式(同步,独立,互补,群组);
- 2) 配置计数模式和计数类型;
- 3) 配置分频寄存器,周期寄存器;
- 4) 配置比较器寄存器以及PWM输出行为寄存器;
- 5) 死区以及刹车相关寄存器;
- 6) PWM输出使能值 1;
- 7) 计数使能位置 1;

16.CRC 校验模块

16.1. 功能概述

- ➤ 支持CRC32-MPEG-2、CRC8 计算
- ▶每一个系统周期计算 1bvte数据
- ▶ 支持更改初值,实现对不同的CRC协议的支持

Note: 当FLASH使用CRC校验代码的时候,CRC模块暂时无法使用。

16.2. 基本功能

16.2.1. CRC 基本介绍

CRC(循环冗余校验)是一种在是数据存储和数据通信的过程中,为了保证数据的正确新,而采用的一种数据校验的手段,常用的使用方法是在需要校验的数据后携带一个CRC校验结果,这个CRC校验结果是根据需要校验的数据和生成多项式进行运算后得到的一个结果,CRC校验结果会和所使用的协议不同,对同一段数据产生不同的校验结果,以下举例目前所支持的两种的协议

例如: 目前需要校验的数据段为[0x11, 0x12, 0x13, 0x14, 0x15]

- 使用 CRC32-MPEG-2 协议的计算结果: 0xD783E03F 所以需要存储和发送的数据为: [0x11, 0x12, 0x13, 0x14, 0x15, 0xD7, 0x83, 0xE0, 0x3F]
- 使用 CRC8 协议的计算结果: 0x55 所以需要存储和发送的数据为: [0x11, 0x12, 0x13, 0x14, 0x15, 0x55]

16.2.2. 支持的 CRC 协议

- CRC32-MPEG-2
 - 多项式: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$ (0x04C11DB7)
 - > INIT: Oxffffffff
 - ➤ REFIN: FALSE
 - > REFOUT: FALSE
 - ➤ XOROUT: 0x00000000

• CRC8:

➤ 多项式: x⁸+x²+x+1 (0x07)

➤ INIT: Oxff

> REFIN: FALSE

> REFOUT: FALSE

> XOROUT: 0x00

16.3. 模块框图

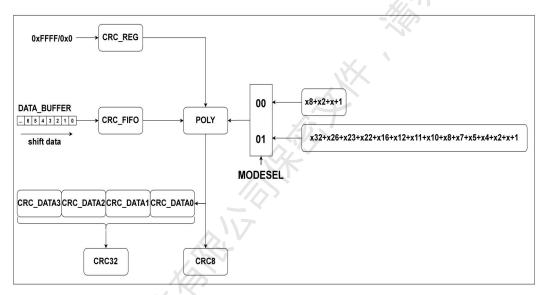


图 16- 1CRC 模块结构框图

16.4. 寄存器列表

表 16-1 CRC32 register list

Offset Offset	Register Name	Description
0xC1 (SFR)	CRC_CON	CRC configuration register
0xC2 (SFR)	CRC_REG	CRC initial register
0xC3 (SFR)	CRC_FIFO	CRC data fifo register
0xC4 (SFR)	CRC_DATA0	CRC result data 0 regiter
0xC5 (SFR)	CRC_DATA1	CRC result data 1 regiter
0xC6 (SFR)	CRC_DATA2	CRC result data 2 regiter

0xC7 (SFR) CRC_DATA3	CRC result data 3 regiter
----------------------	---------------------------

16.5. 寄存器详细说明

16.5.1. **CRC_CON**

Addr = 0xC1 (SFR)

Bit(s)	Name	Description	1	R/W	Reset
7: 1	-	-		1	_
		选择使用 CRC32 还是 CRC8 的功能, CRC8 只需要读取一次 结果, CRC32 需要读取 4 次结果, 把结果拼成一个 32bitCRC			
0	MODESEL	结果。		RW	0x1
		0x0: 使用 CRC8			
		0x1: 使用 CRC32			

16.5.2. **CRC_REG**

Addr = 0xC2 (SFR)

Bit(s)	Name	Description	R/W	Reset
		每次使用前需要先设置初始值设置 CRC 校验的初始值,默		
7: 0	INITSET	认上电的 CRC32 的初始值为 0xffffffff,CRC8 的初始值	WO	0xFF
		为 0xff(第 31-8bit 的值不会影响 CRC8 的结果)。		

Note: 使用 CRC32 模式时,复位初始值需要写 4 次 CRC_REG 寄存器,CRC8 模式时,复位初始值只需要写 1 次 CRC_REG 寄存器。

16.5.3. **CRC_FIFO**

Addr = 0xC3 (SFR)

Bit(s)	Name	Description		Reset
7: 0	DATA	写入每次需要计算的 1byte 数据	WO	0x0

16.5.4. **CRC_DATA0**

Addr = 0xC4 (SFR)

Bit(s	Name	Description	R/W	Reset
7 : 0	DATAO	CRC32 的结果的 0-7bit/CRC8 结果	RO	0x0

16.5.5. CRC_DATA1

Addr = 0xC5 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DATAO	CRC32 的结果的 8-15bit	RO	0x0

16.5.6. CRC DATA2

Addr = 0xC6 (SFR)

Bit(s)	Name	Description		Reset
7: 0	DATAO	CRC32 的结果的 16-23bit	RO	0x0

16.5.7. **CRC_DATA3**

Addr = 0xC7 (SFR)

Bit(s	Name	Description	R/W	Reset
7 : 0	DATAO	CRC32 的结果的 24-31bit	RO	0x0

16.6. 使用流程说明

- 1) 需要配置 CRC_CON 寄存器选择使用 CRC32 或者 CRC8
- 2) 配置 CRC_REG ,一般配置为 0xff/0x00(CRC32 需要四次这个寄存器/CRC8 自需要写一次这个寄存器);
 - 3) 把需要校验的 1byte 数据通过 CRC_FIFO 这个寄存器写进去;

4) 需要读取结果时,读取 CRC DATAO, CRC DATA1, CRC DATA2, CRC DATA3 拼成一个 CRC32 的结果或者是在使用 CRC8 模式时,读取 CRC DATAO 作为 CRC8 的结果。

17.Flash 控制器模块

17.1. 功能概述

- ▶ FLASH控制器带有操作保护功能(在进行FLASH操作前需要配置密码寄存器使能)
- ➤ 通过配置寄存器可以实现对FLASH存储器进行烧录/扇区(128byte)擦除/页(1K)擦除 全片(16K)擦除的功能,同时支持在线烧录
- ▶通过配置寄存器可以实现对FLASH存储器的数据进行CRC校验
- ▶可以配置FLASH存储器的读每 2K加密进行单独加密
- ▶可以配置FLASH存储器的写/擦每 2K进行单独保护
- ▶ 可以支持DMA进行烧写的功能,同时支持自动补齐末尾CRC烧录
- ▶可以支持代码查空和代码区CRC的功能
- ▶可以支持在1vd中断打断FLASH的操作
- ▶ 可以支持有两个单独的扇区进行全擦/页擦除的保护
- ▶可以实现切换PC首地址的功能
- ▶ 支持类EEPROM的使用

17.2. 基本功能

17.2.1. 读时序配置

表 17-1

系统时钟 FLASH_TIMEREGO(TKH)		FLASH_TIMEREGO (TKP)
48M	0	1
32M	0	1
12M 以下	0	0

当 VCC 的电压在 2.5V 以上时,FLASH 的访问时序,配置为以上参数。

表 17-2

系统时钟	FLASH_TIMEREGO(TKH)	FLASH_TIMEREGO(TKP)	
48M	1	3	

32M	1	3
12M 以下	0	0

当 VCC 的电压在 2.5V 以下时,FLASH 的访问时序,配置为以上参数。

NOTE: 根据应该场景,需要按照以上参数配置 FLASH 的访问时序。

17.2.2. 写擦保护机制

通过配置 FLASH_FUNCON 寄存器可以对 FLASH 存储体进行写/擦请求的保护,配置方式为每配置 1bit 代表保护 2K 的 FLASH 存储体,建议在实际使用的过程中进行配置,防止意外发生的情况导致 CPU 跑飞从而对 FLASH 存储体进行了误操作。

17.2.3. 自举模式

可以通过配置 FLASH_BOOTCON 设置程序的初始地址,需要通过系统的软复位进行程序的初始地址的切换,例如: 当 FLASH_BOOTCON 输入 0x15 的密码,将强制从 0 地址执行程序,输入 0x3A,将强制从 BOOTADDR 配置的区执行程序,BOOTLOAD 可以选择从 0/1K/2K/4K 的程序空间开始执行,但是需要配置 SYS_PEND 的第 2bit 触发其软复位。

17.2.4. 自动计算 CRC

通过配置 FLASH_CRC_LEN 设置 CRC 计算的长度,可以通过硬件自动搬运 FLASH 的内部数据进行 CRC 计算,无需配置初值,每次计算会自动配置初值进行计算。

17.2.5. 类 **EEPROM** 使用

FLASH支持在程序运行的过程中进行编程/扇区擦除两种操作,在这种使用场景下建议用户设置用户区配置中的代码保护位和FLASH_FUNCON中的代码保护位,以保护主程序代码在这种使用场景下代码的安全性,这种使用场景下,主要有以下两种操作:

● 不使用DMA的类EEPROM场景:

根据使用流程中的配置,配置需要保存的数据,就可以将需要保存的数据烧录到FLASH 中,进行数据保护,在这中场景下需要软件进行干预。

● 使用DMA的类EEPROM

将所需要存储的数据提前写到SRAM中,配置数据段的长度,SRAM中存放数据的地址,就可以将SRAM中所需要保存的数据段烧录到FLASH中。

同时,用户如果选择打开FLASH_LOCK中的DMACRCEN将会自动计算数据段的CRC值(使用CRC校验模块中的CRC-MPEG-2的协议),在烧录完需要保存的数据段后会自动烧录该数据段计算出来的CRC结果,可以节省用户在使用类EEPROM的场景下的代码量,减少用户在这种场景下耗费的时间。

● 在掉电过程中使用类EEPROM

在掉电过程中使用类EEPROM的场景下,用户可以选择打开FLASH_LOCK中LVDCLREN的功能,在这种情况下在LVD事件触发时,会打断当前FLASH的编程/扇区擦除,同时在掉电过程中使用类EEPROM的场景下,建议用户在电源挂载电容,以保证所需要保存的数据能够成功的编程进FLASH中。

注:最好打开用户区配置中的代码保护位和FLASH_FUNCON中的代码保护位。

17.2.6. 支持用户区配置

用户区会在芯片上电的过程中去配置芯片的某些功能,(会在 CPU 复位释放前就配置完成并且生效)这些功能会大大提高芯片的安全性和可靠性,配置功能的表如下图所示:

表 17-3

	功能	长度	描述
3	CRC_LEN_L	[7: 0]	BOOTLOAD 的 CRC 长度,默认为 0,不进行 CRC 校验
4	CRC_LEN_H	[7: 0]	BOOTLOAD 的 CRC 长度,默认为 0,不进行 CRC 校验
5	CODE_PROTECT	[7: 0]	代码加密,每 1bit 代表 2K

6	FUNTION_PROTECT	[7: 0]	代码保护,每 lbit 代表 2K
_	CHECK_EMPTY	[0]	代码查空使能
7	HRCOSC_SC_48M	[7: 1]	内部高频 48M 精调: aipcon0[6: 0], 软件配置
	VREF_TRIM	[4: 0]	ADC 内部基准源校准: pmucon5[4: 0]
8	HRCOSC_SC2_48M	[6: 5]	新增 2BIT 用于软件再校准, aipcon1[3: 2]
	reserve	[7]	default: 0
	CMP_TRIMIB	[5: 0]	CMP 20mA 电流源校准: cmp_anacon0[5: 0]
9	HRCOSC_SR_48M	[7: 6]	内部高频 48M 粗调: aipcon1[1: 0], 软件配置
	MCLR TO MAPO	[0]	0x1: 选择 P23 为 MCLR 功能 pin?
	MCLR 10 MAPO	[0]	0x0: P23 没有 MCLR 功能?
	MCLR TO MAP1	[1]	0x1: 选择 P25 为 MCLR 功能 pin?
10	MCER TO MAIT		0x0: P25 没有 MCLR 功能?
	MCLR TO MAP2	[0]	0x1: 选择 P15 为 MCLR 功能 pin?
	MCLK 10 MAF2	[2]	0x0: P15 没有 MCLR 功能?
	reserve	[7: 3]	<i>(45)</i>
11~14	CRC32	[31: 0]	byte0~byte12 的 CRC32

根据上表,用户可以配置以下的功能

● 代码区自动进行CRC校验:

芯片上电会自动进行代码区CRC校验,若CRC校验失败,则会让CPU不执行代码,防止在一些特殊情况导致代码丢失的情况下,CPU执行错误的代码,带来不可预测的后果。

● 代码区芯片加密:

可以对代码进行读取加密,加密代码后,FLASH内的对应区间的数据无法被读取,保证 了用户的代码安全性。

● 代码区编程/擦权限保护:

可以对代码进行编程/擦保护,保护代码后,FLASH内对应的区间将无法被编程和擦除,将大大提高了CPU跑飞后修改了FLASH中的代码,提高了芯片在运行的过程中的稳定性和安全性。

17.2.7. NVR 系统信息区域说明

表 17-4

访问字节地址	功能	位长度	描述
0x4004~0x400F	UUID	[95: 0]	每颗芯片 96bit 唯一的身份识别 UUID
0x4010	ADC_OFFSET _IBTRIM	[0]	ADC 失调电流校准(对应配置寄存器 AIP_CON3[7])
0x4010	ADC_OFFSET _TRIM	[6: 1]	ADC 失调校准(对应配置寄存器 AIP_CON4[5:0])
0x4010	ADC_CMPBS_ TRIM	[7]	ADC 内部电流校准(对应配置寄存器 AIP_CON4[7])
0x4011	BGR_TRIM	[2: 0]	PMU 基准校准(对应配置寄存器 PMU_CON3[2:0])
0x4011	VREF_TRIM	[7: 3]	ADC 内部基准源校准(对应配置寄存器 PMU_CON5[4:0]) 注意: 上电硬件自动配置!
0x4012	CMPO_TRIM	[3: 0]	CMP0 失调校准 (对应配置寄存器 CMP0_CON4[3:0])
0x4012	CMP1_TRIM	[7: 4]	CMP1 失调校准 (对应配置寄存器 CMP1_CON4[3:0])
0х4013	CMP_TRIMIB	[5: 0]	CMP 20mA 电流源校准 (对应配置寄存器 CMP_CON[5:0])
0x4014	PGAO_OFFSE T	[7: 0]	PGAO OFFSET 校准(对应配置寄存器 AMP_CON2[7:0])
0x4015	PGA1_OFFSE T	[7: 0]	PGA1 OFFSET 校准(对应配置寄存器 AMP_CON4[7:0])
0x4016	PGA2_OFFSE T	[7: 0]	PGA2 OFFSET 校准(对应配置寄存器 AMP_CON6[7:0])
0x4017	RC64K_TRIM	[6: 0]	内置 RC64K 校准(对应配置寄存器 PMU_C0N4[6:0])
0x4018	HRCOSC_SC_ 48M	[6: 0]	内部高频 48M 精调对应配置寄存器 CLK_ACONO[6:0]) 注意:上电硬件自动配置!
0x401D	HRCOSC_SR_ 48M	[1: 0]	内部高频 48M 粗调对应配置寄存器 CLK_ACON1[1:0]) 注意:上电硬件自动配置!
0x4040	VBG06_2V_T RIM_3V	[4: 0]	使用 VBG06 ADC VREFP 2V 在 VCC=3V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x4041	VBG06_2. 4V _TRIM_3V	[4: 0]	使用 VBG06 ADC VREFP 2.4V 在 VCC=3V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x4042	VBG06_3V_T RIM_3V	[4: 0]	使用 VBG06 ADC VREFP 3V 在 VCC=3V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x4043	VBG06_3.6V _TRIM_3V	[4: 0]	使用 VBG06 ADC VREFP 3.6V 在 VCC=3V 时的 trim 值 (对应配置寄存器 PMU_CON5[4:0])

0x4044	VBG06_2V_T	[4: 0]	使用 VBG06 ADC VREFP 2V 在 VCC=4V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x4045	VBG06_2. 4V _TRIM_4V	[4: 0]	使用 VBG06 ADC VREFP 2.4V 在 VCC=4V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x4046	VBG06_3V_T RIM_4V	[4: 0]	使用 VBG06 ADC VREFP 3V 在 VCC=4V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x4047	VBG06_3.6V _TRIM_4V	[4: 0]	使用 VBG06 ADC VREFP 3.6V 在 VCC=4V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x4048	VBG06_2V_T RIM_5V	[4: 0]	使用 VBG06 ADC VREFP 2V 在 VCC=5V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x4049	VBG06_2. 4V _TRIM_5V	[4: 0]	使用 VBG06 ADC VREFP 2.4V 在 VCC=5V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x404A	VBG06_3V_T RIM_5V	[4: 0]	使用 VBG06 ADC VREFP 3V 在 VCC=5V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])
0x404B	VBG06_3.6V _TRIM_5V	[4: 0]	使用 VBG06 ADC VREFP 3.6V 在 VCC=5V 时的 trim值 (对应配置寄存器 PMU_CON5[4:0])

重要说明:

- ▶ 所有市场上销售的各个型号的每颗芯片在出厂之前都是经过测试机台校准过,校准 值存储在 NVR 系统信息存储区域对应固定的地址(见上表),用户程序中只需要通过指针读 取出来并配置对应的校准值配置寄存器中,无需自己在程序中再次校准。
- 发布的 SDK 中对应的系统初始化函数中会读取 芯片各个模块的校准值并配置对应的模拟模块配置寄存器中,用户可以略过本章节关于校准部分的内容及配置寄存器中关于校准部分的寄存器!
- ▶ 具体举例:如用户需要读取芯片的 96bit 的唯一身份识别 UUID 码,可以通过以下程序读取:

```
u8 code *nvr_info_ptr;
u8 UUID[12];
u8 cnt=0;
nvr_info_ptr = (u8 code *)0x4004;
for(cnt=0;cnt<12;cnt++)
{
     UUID[cnt] = *nvr_info_ptr++;
}</pre>
```

17.3. 模块框图

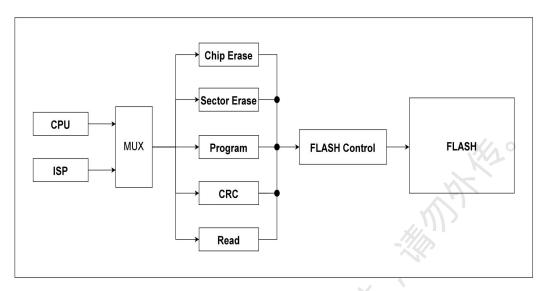


图 17-1 Flash 控制器模块框图

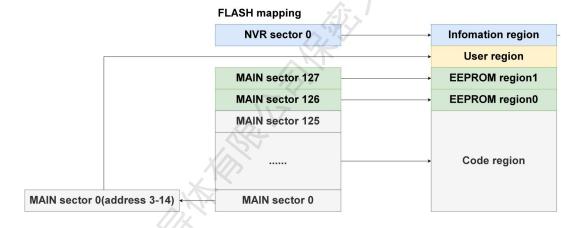


图 17-2 FLASH mapping 框图

17.4. 寄存器列表

表 17-4 FLASH register list

Offset	Register Name	Description
0xA4 (SFR)	FLASH_CON	FLASH control register
0xA5 (SFR)	FLASH_STA	FLASH state register
0xA6 (SFR)	FLASH_DATA	FLASH program data register

OxA7 (SFR)	FLASH_TIMEREGO	FLASH timing control register 0
OxAC (SFR)	FLASH_TIMEREG1	FLASH timing control register 1
OxAD (SFR)	FLASH_CRCLEN	FLASH CRC data length register
OxAE (SFR)	FLASH_PASSWORD	FLASH operation to protect register
OxAF (SFR)	FLASH_ADDR	FLASH program/erase address register
0xBB (SFR)	FLASH_TRIM	FLASH test work mode register
0xBC (SFR)	FLASH_DMASTADR	FLASH dma start address register
0xBD (SFR)	FLASH_DMALEN	FLASH dma length address register
OxCO (SFR)	FLASH_LOCK	FLASH last 2 sector protect register
OxBE (SFR)	FLASH_BOOTCON	FLASH bootload configuration register
0xBF (SFR)	FLASH_ERRSTA	FLASH error state register
0x199 (XSFR)	FLASH_DEBUGSTA	FLASH debug state register
0xFF (SFR)	FLASH_FUNCON	FLASH funtion protect configuration register

17.5. 寄存器详细说明

17.5.1. **FLASH_CON**

Addr = 0xA4 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	-	- \(\infty\)	1	1
5	DMAST	写 1 触发 DMA 模式烧录	WO	0x0
4	PERST	写1触发页擦除	WO	0x0
3	CRCST	写 1 触发 CRC 校验,需要先配置寄器 MTP_CRC_LEN 的大小 才可以触发该操作	WO	0x0
2	1(2)	-	-	-
1 /	SERST	写1触发扇区擦除	WO	0x0
0	PROGST	写 1 触发烧录操作	WO	0x0

Note: FLASH 控制器带有操作保护功能,需要先正确配置 FLASH_PASSWORD 寄存器才正确触发以上的操作.

17.5.2. **FLASH_STA**

Addr = 0xA5 (SFR)

Bit(s)	Name	Description	R/W	Reset
		dma 烧录等于 dma 长度的工作标志,写 1 清 0		
7	OVPEND	0x0: dma 仍未烧录完成	RW	0x0
		0x1: dma 烧录完成	(L°	
		dma 烧录等于 dma 长度的一半的工作标志,写 1 清 0		
6	HFPEND	0x0: dma 烧录仍未烧录到一半	RW	0x0
		0x1: dma 烧录超过一半		
		代码区域的 CRC 是否通过		
5	MAINCRCFAIL	0x0: 代码区域 CRC 通过	RO	0x0
		0x1: 代码区域 CRC 不通过/不开启这		
		页擦除模式工作标志		
4	PERPEND	0x0: 正在进行页擦除	RO	0x0
		0x1: 空闲状态		
		CRC 模式工作标志位		
3	CRCPEND	0x0:正在进行 CRC 校验	RO	0x0
		0x1: 空闲状态		
		全片擦除模式工作标志		
2	CERPEND	0x0: 正在进行全片擦除	RO	0x0
		0x1: 空闲状态		
	->'	扇区擦除模式工作标志		
1	SERPEND	0x0: 正在进行扇区擦除	RO	0x0
	1/4	0x1: 空闲状态		
	1-75	烧录模式工作标志		
0	PROGPEND	0x0: 正在进行烧录	RO	0x0
/	Ÿľ.	0x1: 空闲状态		

17.5.3. **FLASH_DATA**

Addr = 0xA6 (SFR)

Bit(s)	Name	Description	R/W	Reset
--------	------	-------------	-----	-------

7 0	DATA	FLASH 存储器的数据位宽为 8 位,在类 EEPROM 的使用场	DW	0.20
7: 0	DATA	景的时候,需要将要编程的数据写到该寄存器中	I\W	0x0

$17.5.4.\ \mathbf{FLASH_TIMEREG0}$

Addr = 0xA7 (SFR)

Bit(s)	Name	Description	R/W	Reset
		扇区擦除时序控制(默认时间为 100ms)		
		0x0: 默认值		
7 : 6	TERH	0x1: 101ms	RW	0x0
		0x2: 102ms		
		0x3: 103ms		
		后同步信号时序控制信号(默认时间为 2us)		
		0x0: 默认值		
5 : 4	TPOAM	0x1: 3us	RW	0x0
		0x2: 4us		
		0x3: 5us		
		前同步信号时序控制信号(默认时间为 2us)		
		0x0: 默认值		
3: 2	TPRAM	0x1: 3us	RW	0x0
		0x2: 4us		
		0x3: 5us		
		烧录时序控制信号(默认时间为 30us)		
	× 2	0x0: 默认值		
1: 0	TPGHF	0x1: 31us	RW	0x0
	1375	0x2: 32us		
	-1(-)	0x3: 33us		

17.5.5. FLASH_TIMEREG1

Addr = OxAC (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	TCERH	全片擦除时序控制信号(默认时间为 100ms)	RW	0x0

		0x0: 默认值		
		0x1: 101ms		
		0x2: 102ms		
		0x3: 103ms		
		连续操作时序控制(默认时间为 2*Tsys)		
		0x0: 默认值		
5 : 4	TPEL	0x1: 3*Tsys	RW	0x0
		0x2: 4*Tsys	(7°	
		0x3: 5*Tsys		
3: 2	TKP	读周期时序控制信号,具体配置看配置表	RW	0x0
1: 0	TKH	读信号高电平时序控制信号,具体配置看配置表	RW	0x0

Note: TKH 应配置大于等于 TKP 的值(TKP 和 TKH 的配置请查看具体的配置表)。

17.5.6. FLASH_CRCLEN

Addr = OxAD (SFR)

Bit(s	Name	Description	R/W	Reset
7: 0	LEN	CRC 校验操作的数据大小(单位:字节) 0x0:无法工作 0x1:校验 1byte 0x2:校验 2byte 0xff:校验 255byte	RW	0x0

Note: 当 FLASH_CRC_LEN 的配置值为 0 时, CRC 操作无法触发。

17.5.7. FLASH_PASSWORD

Addr = OxAE (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	PASSWORD	操作保护密码,执行 FLASH_CON 的操作之前需要配置该	WO	0x0
		寄存器,密码为 0xB9		

17.5.8. **FLASH_ADDR**

Addr = OxAF (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0 ADDR	ADDD	FLASH 存储器的地址为 15 位,需要操作的时候需要对该	WO	0.0
	ADDR	寄存器写两次,第一次写高7位,第二次写低8位。	WO	0x0

Note: 进行 FLASH 的烧录/扇区擦除/页擦除/全片擦除时,需要将地址对齐,否则无法进行操作。该地址映射的就为 CPU 的逻辑地址

17.5.9. **FLASH_TRIM**

Addr = OxBB (SFR)

Bit(s)	Name	Description	R/W	Reset
		测试模式下的 MODESEL 信号		
7	MODESEL	0x0: 4 次编程模式	RW	0x1
		0x1: 1 次编程模式		
6	DPMODESEL	测试模式下的 DPMODESEL 信号	RW	0x0
5 : 4	TRIM	测试模式下的 TRIM 信号	RW	0x2
3: 2	SSEL	测试模式下的 SSEL 信号	RW	0x1
1	VRDCGSEL	测试模式下的 VRDCGSEL 信号	RW	0x0
0	TRF	测试模式下的 TRF 信号	RW	0x0

Note: 正常使用下不用配置这个寄存器(只供测试使用,在非测试模式下使用可能会引发问题)。

17.5.10. **FLASH_LOCK**

Addr = 0xC0 (SFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	_	_	1	-
	DMAOVIE	在 DMA 烧录模式下,DMA 完成产生系统中断使能		
4		0x0: 不使能中断	RW	0x0
		0x1: 使能中断		

	LVDCLREN	LVD 中断是否打断 FLASH 操作使能		
3		0x0: 不使能该功能	RW	0x0
		0x1: 使能该功能		
	DMACRCEN	使能 DMA 操作时自动在烧录代码后添加烧录代码的 CRC		
2		0x0: 关闭功能	RW	0x0
		0x1: 使能功能		
	LOCKSN2	使能最后倒数第1个 sector 的全擦除和页擦除保护	// 0	
1		0x0: 使能保护	RW	0x1
		0x1: 关闭保护		
	LOCKSN1	使能最后倒数第二个 sector 的全擦除和页擦除保护		
0		0x0: 使能保护	RW	0x1
		0x1: 关闭保护		

17.5.11. FLASH_DMASTADR

Addr = 0xBC (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DMASTADR	FLASH 的 DMA 烧录模式的初始地址(8byte 对齐)	RW	0x0

17.5.12. FLASH_DMALEN

Addr = 0xBD (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DMALEN	FLASH 的 DMA 烧录模式的初始地址(8byte 对齐)	RW	0x0

Note: 当 FLASH_DMA_LEN 的配置值为 0 时, DMA 烧录无法触发。

17.5.13. FLASH_BOOTCON

Addr = OxBE (SFR)

Bit(s)	Name	Description	R/W	Reset
7 9	ВООТКЕУ	输入 0x15, 将强制从 0 地址执行程序, 输入 0x3A, 将	WO	0**0
7: 2	BOOTKEY	强制从 BOOTADDR 配置的区执行程序	WO	0x0

		跳转到代码区的地址		
		0x0: 默认从0开始		
1: 0	BOOTADDR	0x1: 从 2K 开始	RW	0x0
		0x2: 从 4K 开始		
		0x3: 从 6K 开始		

Note: 配置完该寄存器后,需要执行软复位才可以进行代码区跳转。

17.5.14. **FLASH_ERRSTA**

Addr = 0xBF (SFR)

Bit(s)	Name	Description	R/W	Reset
		代码区的 CRC 是否通过		
7	MAINCRCOK	0x0:没有通过/没有开启代码区 CRC 的功能	RO	0x0
		0x1: 通过代码区 CRC		
	MTPSUPERKEYFLA	SUPERKEY 是否有效		
6	G	0x0: 有效	RO	0x1
	U	0x1: 无效		
		USER 区域的 CRC 不通过的 LOCK 信号		
5	USERNOPASSLOCK	0x0: USER 区域的 CRC 不通过 LOCK 无效	RO	0x0
		0x1: USER 区域的 CRC 不通过 LOCK 有效		
		USER 区域的 CRC 通过的 LOCK 信号		
4	USERLOCK	0x0: USER 区域的 CRC 通过 LOCK 无效	RO	0x0
	V.	0x1: USER 区域的 CRC 通过 LOCK 有效		
	7.7%	NVR 区域的 CRC 不通过的 LOCK 信号		
3	NVRNOPASSLOCK	0x0: NVR 区域的 CRC 不通过 LOCK 无效	RO	0x0
	1375	0x1: NVR 区域的 CRC 不通过 LOCK 有效		
	-15-3	NVR 区域的 CRC 通过的 LOCK 信号		
2	NVRLOCK	0x0: NVR 区域的 CRC 通过 LOCK 无效	RO	0x0
		0x1: NVR 区域的 CRC 通过 LOCK 有效		
		代码区查空结果是否为空		
1	CHECKEMPTY	0x0: 代码区有代码	RO	0x0
		0x1: 代码区没有代码		
0	8KMODE	进入了 8K 模式	RO	0x0

0x0: 16K 模式	
0x1: 8K 模式	

Note: 该寄存器默认值需要会根据出厂的配置不同而不同.

17.5.15. FLASH_DEBUGSTA

Addr = 0x199 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		上电过程超时标志		
7	TIMEOUT	0x0: 上电过程没有超时	RO	0x0
		0x1: 上电过程超时		
		寄存器配置写/擦保护开启		
6	FUNCONPROT	0x0: 写/擦保护关闭	RO	0x0
		0x1: 写/擦保护开启		
		写/擦保护开启(USER 区配置)		
5	FUNPROT	0x0: 写/擦保护关闭	RO	0x0
		0x1: 写/擦保护开启		
		读保护开启(USER 区配置)		
4	RDPROT	0x0: 读保护关闭	RO	0x0
		0x1: 读保护开启		
		页擦除权限		
3	PERLOCK	0x0: 页擦除权限开启	RO	0x0
	V.	0x1: 页擦除权限关闭		
	7.7%	扇区擦除权限		
2	SERLOCK	0x0: 扇区擦除权限开启	RO	0x0
	1375	0x1: 扇区擦除权限关闭		
	-1(5/5)	全擦权限标志		
1 4	CERLOCK	0x0: 全擦权限开启	RO	0x0
	*	0x1: 全擦权限关闭		
		写权限标志		
0	PROGLOCK	0x0: 写权限开启	RO	0x0
		0x1: 写权限关闭		

Note: 该寄存器默认值需要会根据出厂的配置不同而不同.

17.5.16. FLASH_FUNCON

Addr = 0xFF (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	FUNCON	每 1bit 代表可以保护 2K 的代码,保护写/擦	RW	0x0

17.6. 使用流程说明

DMA 烧录模式使用:

- 1) 配置需要操作的 FLASH 的地址
- 2) 提前在对应的 RAM 中初始化需要烧录的数据
- 3)配置 FLASH_DMA_STADR 和 FLASH_DMA_LEN 设定 DMA 的首地址和长度,如果希望在烧录时末尾自动增加 CRC 校验值时,使能 FLASH_LOCK 中的 DMACRCEN
 - 4) 配置 FLASH PASSWORD 寄存器使能
 - 5) 配置 FLASH_CON 触发 DMA 操作
 - 6)等待对应的FLASH_STA中的OVPEND为高结束一次DMA操作

普通 FLASH 操作:

- 1) 配置需要操作的 FLASH 的地址 (需对齐对应的地址才可以触发对应的操作)
- 2) 配置需要操作的 FLASH 的数据
- 3) 配置 FLASH_PASSWORD 寄存器使能
- 4) 配置 FLASH CON 触发对应的 FLASH 操作
- 5)等FLASH_STA 对应的 pending 为高,结束一次FLASH操作

18. 模数转换器(ADC)

18.1. 功能概述

- ► ADC具有 12BIT转换精度
- ▶ 高达 500KSPS的转换速度
- ▶ 支持 26 路IO的单端模拟输入通道
- ▶ 支持外部参考电压/内部参考电压作为ADC的参考电压
- ➤ ADC有效位约 10bit (ADC通过内部开关接到芯片的VCC,以此电压作为ADC的参考电压,ADC满量程等于VCC)
- ▶ ADC通过通路选择器可以实对现所有IO口输入电压进行数据转换
- ▶ 采样时间可调,可调范围: 5~256 个ADC时钟
- ▶ 支持 3 通道仲裁触发 (可带DLY功能触发)
- ▶ 支持 15 路硬件触发源和 1 路软件触发
- > 支持硬件自动切换通道,提高连续采样的速度
- ▶比较器offset可以校准
- ▶可以通过ADC的通路选择把Analog测试信号,输入到任意I/0口

18.2. 基本功能

18.2.1. 外部触发源

ADC 外部触发源头来自于 SUPER TIMER/TIMERO/IO 外部触发。

- 1) SUPER TIMER 的触发源来自于 SUPER TIMERO/2/4
- PWM 上升沿(SUPER TIMERO/2/4 PWM 上升沿): SUPER TIMER 的输出到 IO 的 PWM 上升 沿。
- PWM 下降沿 (SUPER TIMERO/2/4 PWM 下降沿): SUPER TIMER 的输出到 IO 的 PWM 下降沿。
- 周期点(SUPER TIMERO/2/4 PWM 周期点): SUPER TIMER 模块中 SEMRn_IF(n=0/2/4)的第 0 位,所以在触发完一次后,需要手动清除标志位,才可以重新触发第二次。(具体描述可以看 SUPER TIMER 模块描述)
- 零点(**SUPER TIMERO/2/4 PWM 零点**): SUPER TIMER 模块中 SEMRn_IF (n=0/2/4) 的第 1 位,所以在**触发完一次后,需要手动清除标志位,才可以重新触发第二次。**(具体描

述可以看 SUPER TIMER 模块描述)

- SUPER TIMERO 的 C 点(SUPER TIMERO C 点):需要配置 STMR_CMPL 和 STMR_CMPH,当
 SUPER TIMERO 的计数值等于配置 STMR_CMPL 和 STMR_CMPH 的值时,会触发 ADC 进行采
 样。(具体描述可以看 SUPER TIMER 模块描述)
- 2) TIMERO 的触发源(TIMERO 降采样触发)
- TIMERO 发生 OVERFLOW 事件时会触发 ADC 进行转换。(TIMERO 不与 SUPER TIMER 进行联 动时)
- TIMERO 与 SUPER TIMER 进行联动时,具体的 TIMERO 计数源可以看 SIMPLE TIMER 模块描述。
- 3) GPIO 触发源 (GPIO 外部触发)
- 需要将 I0 配置成输入模式,同时配置 FIN_S15,选择对应的 I0, I0 如果出现上升沿变化则会触发 ADC 转换。

18.2.2. 内部采样通道描述

ADC 内部采样通道有 5 个采样通道,分别是芯片内部参考 0.6V (VREF_0P6),芯片电源电压的 5 分压值(VCCA_5D),运放 0/1/2 (AMP0/1/2) 的输出电压。

18.2.3. 单通道触发模式

单通道触发模式是只使能 ADC_CFGO 中的 CHANOEN/CHAN1EN/CHAN2EN,如果只使能通道 0时,只有配置的 ADC_TRGO 的通道 0的触发源可以触发 ADC 的转换,而且此时 ADC 使用的是 ADC_CHSO 的模拟转换通道,当然,只使能通道 1/2 同理,对应使用 ADC_TRG1/2 的触发源和 ADC_CHS1/2 的转换通道。如下图所示:

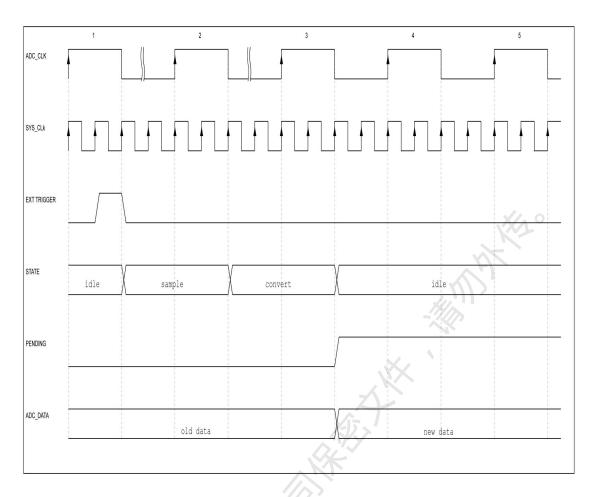


图 18-1 单通道触发模式时序图

18.2.4. 多通道触发模式

多通道触发模式是同时使能 ADC_CFGO 中 CHANOEN/CHAN1EN 或 CHAN1EN/CHAN2EN 或 CHANOEN/CHAN2EN 或 CHANOEN/CHAN1EN/CHAN2EN, 如果当前只使能通道 0 和 1,即 CHANOEN 和 CHAN1EN 同时使能,而 CHAN2EN 不使能,在这种模式下,通道 0 的优先级高于通道 1 的优先级,在这种时候一般会出现以下两种情况:

- 仲裁: 当 ADC_TRG0 和 ADC_TRG1 中的配置的触发源在同一时刻触发 ADC 时,会先响应 ADC_TRG0 的配置的触发源,同时采用 ADC_CHS0 中对应的模拟采样通道,再响应完后通 道 0 的触发后才响应通道 1 的触发,响应通道 1 的触发时使用 ADC_CHS1 中对应的模拟 采样通道
- 排队:在通道 0 进行转换时,此时如果再来通道 0 的触发将会忽视,不会响应也不会进行锁存,如果此时来通道 1 的触发将会锁存通道 1 的请求,等到通道 0 转换完之后再进行通道 1 的转换,当然,在通道 1 进行转换是也是同理,来通道 1 的触发将会忽视,但是如果此时来通道 0 的触发,会锁存对应的请求,等到通道 1 转换完成后才会去转换通道 0。如下图所示:

注: 通道的优先级: 通道 0>通道 1>通道 2

图 18-2 多通道触发模式时序图

18.2.5. 触发延迟模式

触发延迟模式在通道使能的基础上加上触发延迟的功能 CHANOEN&DLYOEN/CHAN1EN&DLY1EN/CHAN2EN&DLY2EN,在这种模式下当通道0在ADC_TRGO/1/2 配置的触发源来了之后,并不是马上开始ADC转换,需要等待ADC_TRGO/1/2中配置的DLYCYC中配置的延迟时间后才会去进行ADC转换,与此同时,在这种模式下,ADC的三个通道有仲裁机制,可以同时开启触发延迟模式和多通道触发模式。

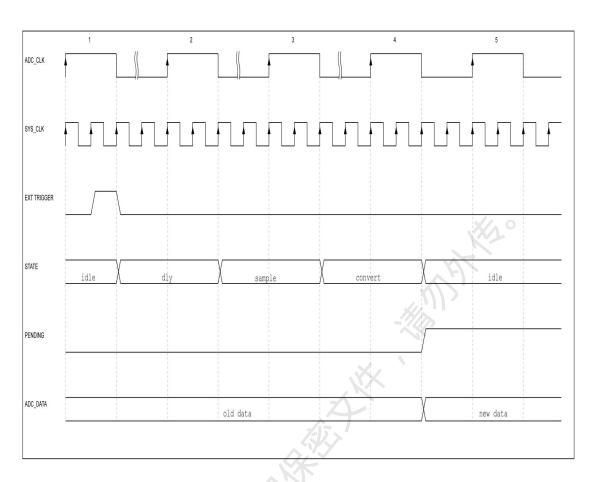


图 18-3 触发延迟模式时序图

18.2.6. 加速模式

当 ADC_CMPDATAL 的 SPEEDMODEEN 使能后,当通道 0 和 1 同时选择同一个触发源时,硬件将会在通道 0 转换完后马上进行通道 1 的转换,同时会将采样通道提前进行切换,以满足通道的建立时间,提高连续采样的采样速度。

注:在使能这种模式时,一定要将通道 0/1 配置成相同的触发源,否则会出现不可预测的后果。

18.2.7. 数字比较器

当配置数字比较器的比较值时,需要配置 ADC_CMPDATAH 和 ADC_CMPDATAL 的 CMPDATAH 和 CMPDATAL 时,同时使能 CMPENO/CMPEN1/CMPEN2 时,对应通道的 ADC 转换结果会和设置的比较值进行比较,但是三个通道共用同一个比较值,同时当转换的结果大于比较值时会使 ADC STA 中的 BRKADC 的标志位为 1,此时在 Super timer 中有对应的硬件的刹车使能位。

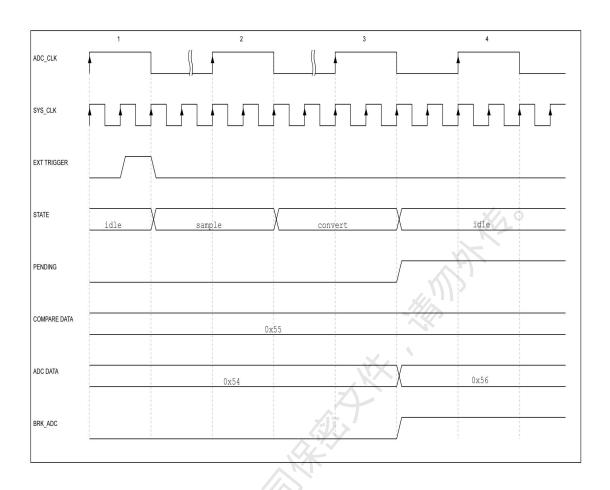


图 18-4 数字比较器模式工作时序图

18.2.8. 模拟校准/数字校准

NOTE: 所有市场上销售的各个型号的每颗芯片在出厂之前都是经过测试机台校准过,校准值存储在 NVR 存储器固定的地址,用户程序中只需要通过指针读取出来并配置对应的校准值寄存器中,无需自己在程序中再次校准。发布的 SDK 中对应的系统初始化函数中会读取芯片各个模块的校准值并配置对应的模拟模块配置寄存器中,用户可以略过本章节关于校准部分的内容及配置寄存器中关于校准部分的寄存器!

- 模拟校准:需要先使能 ADC_CFG0 中 CALIBEN,然后将通道 0 配置成单通道触发模式,进行一次软件触发后,将转换后的结果的低 6 位写到 comp_trim_vdd,然后再关闭 CALIBEN,并且清除 ADC STA 中通道 0 完成标志和模拟校准标志,完成模拟校准。
- 数字校准: 只需要 ADC_CFG1 的 CPCALIBST,等待 ADC_STA 中的数字校准标志位后,清除数字校准标志位后完成数字校准。

18.3. 模块框图

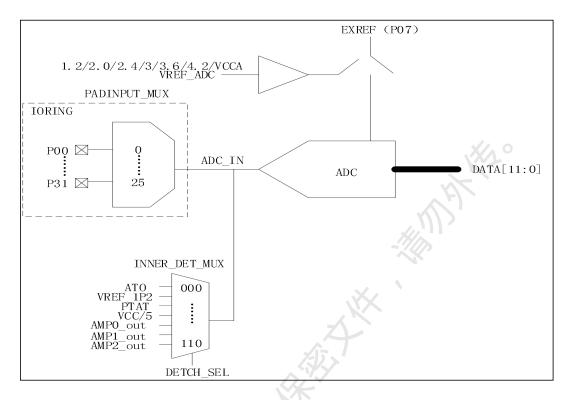


图 18-5 ADC 模块结构框图

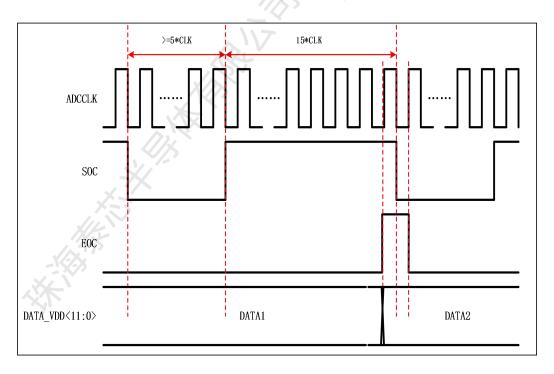


图 18-6 ADC 转换时序图

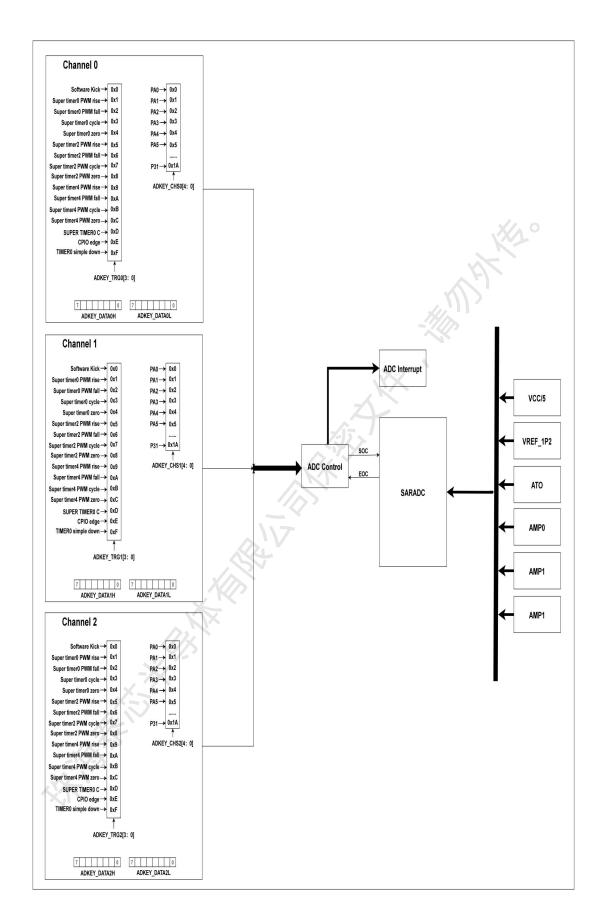


图 21-7 模块结构框图

18.4. 寄存器列表

表 $21-1\,\text{ADC}$ register list

Offset	Register Name	Description
0x69 (XSFR)	ADC_CFG0	ADC configuration 0 register
0x6A (XSFR)	ADC_CFG1	ADC configuration 1 register
0x91 (SFR)	ADC_CFG2	ADC configuration 2 register
0x92 (SFR)	ADC_CFG3	ADC configuration 3 register
0xFC (SFR)	ADC_CFG4	ADC configuration 4 register
0x6B(XSFR)	ADC_STA	ADC state register
0x93 (SFR)	ADC_DATAHO	ADC channelO data high 8bit register
0x94 (SFR)	ADC_DATALO	ADC channelO data low 4bit register
0x95 (SFR)	ADC_DATAH1	ADC channell data high 8bit register
0x96 (SFR)	ADC_DATAL1	ADC channel1 data low 4bit register
0x97 (SFR)	ADC_DATAH2	ADC channel2 data high 8bit register
0x98 (SFR)	ADC_DATAL2	ADC channel2 data low 4bit register
0x99 (SFR)	ADC_CHS0	ADC channelO select register
0x9A (SFR)	ADC_CHS1	ADC channel1 select register
0x9D (SFR)	ADC_CHS2	ADC channel2 select register
0x9E (SFR)	ADC_TRGS0	ADC trigger0 select register
0x9F (SFR)	ADC_TRGS1	ADC trigger1 select register
0xA1 (SFR)	ADC_TRGS2	ADC trigger2 select register
0xA2 (SFR)	ADC_CMPDATAH	ADC digital compare data register
0xA3 (SFR)	ADC_CMPDATAL	ADC digital compare data register

18.5. 寄存器详细说明

18.5.1. **ADC_CFG0**

Addr = 0x69 (XSFR)

Bit(s	Name	Description	R/W	Reset
7	CALIBEN	开启硬件校准,开启后的通道 0 低 6bit 作为校准结果, 填回去 ADC_ACON2 的 ADCCMPTRIM	RW	0x0
		A/D 转换使能(ADC 使能)		
6	ADCEN	0x0: 关闭	RW	0x0
		0x1: 使能	40	
		通道2转换使能		
5	CHAN2EN	0x0: 关闭	RW	0x0
		0x1: 使能		
		通道1转换使能		
4	CHAN1EN	0x0: 关闭	RW	0x0
		0x1: 使能		
		通道 0 转换使能		
3	CHANOEN	0x0: 关闭	RW	0x0
		0x1: 使能		
2	ADST2	ADC 通道 2 触发转换	WO	0x0
	ND012	写1开始触发通道3进行转换	"0	OAO
1	ADST1	ADC 通道 1 触发转换	WO	0x0
	NDS11	写1开始触发通道1进行转换	"0	UAU
0	ADSTO	ADC 通道 0 触发转换	WO	0x0
U	ADSTO	写1开始触发通道0进行转换	WO.	UXU

18.5.2. **ADC_CFG1**

Addr = 0x6A (XSFR)

Bit(s	Name	Description	R/W	Reset
7	CPCALIBST	写 1 触发数字校准功能	WO	0x0
6: 3	ADCPRE	ADC 时钟分频, 分频比为 n+1, 3 分频以下无法正常工作, 需要配置大于 3 分频, ADC 输入时钟最大为 10MHz, Fadc=Fsys/ADCPRE, 其中 Fadc 为 ADC 输入时钟, Fsys 为系统时钟;	RW	0x4

		Note: ADC 输入时钟超过 10MHz 会导致采样不准!		
		0x3: 4分频		
		0x4: 5 分频		
		0x5: 6 分频		
		0xf: 16 分频		
		ADC 通道 2 的中断使能	/	
2	CHAN2IE	0x0: 中断不使能	RW	0x0
		0x1: 中断使能		
		ADC 通道 1 的中断使能		
1	CHAN1 IE	0x0: 中断不使能	RW	0x0
		0x1: 中断使能		
		ADC 通道 0 的中断使能		
0	CHANOIE	0x0: 中断不使能	RW	0x0
		0x1: 中断使能		

18.5.3. ADC_CFG2

Addr = 0x91 (SFR)

Bit(s)	Name	Description	R/W	Reset
		通道 0 采样时间配置,配置比为 n+1 时钟		
		0x0: 1 个采样时钟周期		
7 0	FSMPCYCO	0x1: 2 个采样时钟周期	RW	0x4
7: 0		0x2: 3 个采样时钟周期		
		0xff: 256 个采样时钟周期		

Note: 为了 ADC 能够正常工作,采样时间最少配置为 4.

18.5.4. **ADC_CFG3**

Addr = 0x92 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	FSMPCYC1	通道1采样时间配置,配置比为 n+1 时钟	RW	0x4

	0x0: 1 个采样时钟周期	
	0x1: 2 个采样时钟周期	
	0x2: 3 个采样时钟周期	
	0xff: 256 个采样时钟周期	

Note: 为了 ADC 能够正常工作,采样时间最少配置为 4。

18.5.5. **ADC_CFG4**

Addr = OxFC (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	FSMPCYC2	通道2采样时间配置,配置比为 n+1 时钟 0x0: 1 个采样时钟周期 0x1: 2 个采样时钟周期 0x2: 3 个采样时钟周期	RW	0x4
		0xff: 256 个采样时钟周期		

Note: 为了 ADC 能够正常工作,采样时间最少配置为 4。

18.5.6. **ADC_STA**

Addr = 0x6B (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	CMPOUT	ADC 中模拟比较器输出,用于校准	RO	0x0
	ME	ADC 刹车信号标志,写 1 清 0		
6	BRKADC	0x0: ADC 没有触发刹车事件	RW	0x0
	X	0x1: ADC 触发刹车事件		
	K)	数字校准完成标志,写1清0		
5	EODTADCFLAG	0x0: 数字校准没开始或者没完成	RW	0x0
		0x1: 数字校准完成		
		模拟校准完成标志,写1清0		
4	EOATADCFLAG	0x0: 模拟校准没开始或者没完成	RW	0x0
		0x1: 模拟校准完成		

3	CHAN2OVPEND	通道2转换结束,写1清0 0x0:通道2转换没开始或者没完成 0x1:通道2转换完成	RW	0x0
2	CHAN1OVPEND	通道 1 转换结束,写 1 清 0 0x0: 通道 1 转换没开始或者没完成 0x1: 通道 1 转换完成	RW	0x0
1	CHANOOVPEND	通道 0 转换结束,写 1 清 0 0x0:通道 0 转换没开始或者没完成 0x1:通道 0 转换完成	RW	0x0
0	BUSY	ADC 忙/空闲 0x0: ADC 空闲 0x1: ADC 转换中	RO	0x0

18.5.7. **ADC_DATAH0**

Addr = 0x93 (SFR)

Bit(s)	Name	Description	R/W	Reset
7 : 0	DATAOH	通道 0 的 12 位 A/D 转换结果高 8 位	RW	0x0

18.5.8. **ADC_DATAL0**

Addr = 0x94 (SFR)

Bit(s)	Name -	Description	R/W	Reset
7: 4	DATAOL	通道 0 的 12 位 A/D 转换结果低 4 位	RW	0x0
3: 0	- 1/15	-	_	_

18.5.9. **ADC_DATAH1**

Addr = 0x95 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DATA1H	通道 1 的 12 位 A/D 转换结果高 8 位	RW	0x0

18.5.10. **ADC_DATAL1**

Addr = 0x96 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 4	DATA1L	通道1的12位A/D转换结果低4位	RW	0x0
3: 0	_	-	=	-

18.5.11. **ADC_DATAH2**

Addr = 0x97 (SFR)

Ī	Bit(s)	Name	Description	R/W	Reset
	7: 0	DATA2H	通道 2 的 12 位 A/D 转换结果高 8 位	RW	0x0

18.5.12. **ADC_DATAL2**

Addr = 0x98 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 4	DATA2L	通道 2 的 12 位 A/D 转换结果低 4 位	RW	0x0
3: 0	_	- 10	-	_

18.5.13. **ADC_CHS0**

Addr = 0x99 (SFR)

Bit(s)	Name	Description	R/W	Reset
	-123	通道0数据格式控制		
7	FRMTCHANO	0x0: 左对齐	RW	0x0
Ĭ.	γ-	0x1: 右对齐		
		通道 ODLY 功能使能		
6	DLYOEN	0x0: 关闭	RW	0x0
		0x1: 使能		
5	CHANOEXT	内外部通道选择	RW	0x0

	0x0: 外部通道	
	0x1: 内部通道	
	通道 0 的模拟转换通道选择	
	当 CHANOEXT 为 0 时,CHANSELO 的模拟通道选择为	
	GPIO,对应关系为:	
	0x0: P00	
	0x1: P01	
	0x2: P02	
	0x3: P03	
	0x4: P04	
	0x5: P05	
	0x6: P06	
	0x7: P07	
	0x8: P10	
	0x9: P11	
	0xA: P12	
	0xB: P13	
4 O CHANCEL	0xC: P14	01E
4: 0 CHANSEL	0xD: P15	0x1F
	0xE: P16	
	0xF: P17	
	0x10: P20	
	0x11: P21	
	0x12: P22	
	0x13: P23	
1/1	0x14: P24	
1-21-7	0x15: P25	
342	0x16: P26	
337	0x17: P27	
	0x18: P30	
	0x19: P31	
	当 CHANOEXT 为 1 时,CHANSELO 的模拟通道对应选	
	择为内部通道,对应关系为:	
	0x0: 保留,未定义	

0x1: VREF_0P6 0x2: 保留, 未定义 0x3: VCCA_D5 0x4: AMP0 0x5: AMP1 0x6: AMP2 0x7: 不使能 Note: 采样内部通道时需要将 ADC_ACONO [6: 4] 设置成 0 采样内部通道时需要将 ADC_ACON0[6: 4]设置成 0 VREF_0P6: 芯片内部 0.6V 参考源, 与比较器中 DAC 的参考源相同 VCCA_D5: 芯片的 VCC 电源电压的 5 分压值 AMP0: 运放 0 输出电压 AMP1: 运放1输出电压 AMP2: 运放 2 输出电压

18.5.14. **ADC_CHS1**

Addr = 0x9A (SFR)

Bit(s)	Name	Description	R/W	Reset
		通道1数据格式控制		
7	FRMTCHAN1	0x0: 左对齐	RW	0x0
	J-X	0x1: 右对齐		
	//57	通道 1DLY 功能使能		
6	DLY1EN	0x0: 关闭	RW	0x0
	-1(2)	0x1: 使能		
4	*	内外部通道选择		
5	CHAN1EXT	0x0: 外部通道	RW	0x0
		0x1: 内部通道		
		通道 1 的模拟转换通道选择		
4: 0	CHANSEL1	当 CHAN1EXT 为 0 时,CHANSEL1 的模拟通道选择为	RW	0x1F
		GPIO,对应关系为:		

	0x0: P00		
	0x1: P01		
	0x2: P02		
	0x3: P03		
	0x4: P04		
	0x5: P05		
	0x6: P06	// 0	
	0x7: P07	120	
	0x8: P10		
	0x9: P11		
	0xA: P12		
	0xB: P13		
	0xC: P14		
	0xD: P15		
	0xE: P16		
	0xF: P17		
	0x10: P20		
	0x11: P21		
	0x12: P22		
	0x13: P23		
	0x14: P24		
	0x15: P25		
	0x16: P26		
-X	0x17: P27		
7-5	0x18: P30		
XX	0x19: P31		
1-75	当 CHAN1EXT 为 1 时,CHANSEL1 的模拟通道对应选		
	择为内部通道,对应关系为:		
7/1	0x0:保留,未定义		
	0x1: VREF_0P6		
	0x2: 保留, 未定义		
	0x3: VCCA_D5		
	0x4: AMPO		
	0x5: AMP1		

0x6: AMP2
0x7: 不使能
Note:

采样内部通道时需要将 ADC_ACON0[6: 4]设置成 0

采样内部通道时需要将 ADC_ACON0[6: 4]设置成 0

VREF_0P6: 芯片内部 0.6V 参考源,与比较器中 DAC
的参考源相同
VCCA_D5: 芯片的 VCC 电源电压 5 分压值

AMP0: 运放 0 输出电压

AMP1: 运放 1 输出电压

AMP2: 运放 2 输出电压

18.5.15. **ADC_CHS2**

Addr = 0x9D (SFR)

Bit(s)	Name	Description	R/W	Reset
		通道2数据格式控制		
7	FRMTCHAN2	0x0: 左对齐	RW	0x0
		0x1: 右对齐		
		通道 2DLY 功能使能		
6	DLY2EN	0x0: 关闭	RW	0x0
		0x1: 使能		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	内外部通道选择		
5	CHAN2EXT	0x0: 外部通道	RW	0x0
	//37	0x1: 内部通道		
	175	通道 2 的模拟转换通道选择		
	-1(2)	当 CHAN2EXT 为 0 时,CHANSEL2 的模拟通道选择为		
3	*	GPIO,对应关系为:		
4 0	Y	0x0: P00		0.15
4: 0	CHANSEL2	0x1: P01	RW	0x1F
		0x2: P02		
		0x3: P03		
		0x4: P04		

	0x5: P05
	0x6: P06
	0x7: P07
	0x8: P10
	0x9: P11
	0xA: P12
	0xB: P13
	0xC: P14
	0xD: P15
	0xE: P16
	0xF: P17
	0x10: P20
	0x11: P21
	0x12: P22
	0x13: P23
	0x14: P24
	0x15: P25
	0x16: P26
	0x17: P27
	0x18: P30
	0x19: P31
	当 CHAN2EXT 为 1 时,CHANSEL2 的模拟通道对应选
	择为内部通道,对应关系为:
-*/	0x0: 保留, 未定义
*	0x1: VREF_0P6
XX	0x2: 保留,未定义
1-7-7-	0x3: VCCA_D5
	0x4: AMPO
N. C.	0x5: AMP1
	0x6: AMP2
	0x7: 不使能
	Note:
	采样内部通道时需要将 ADC_ACON0[6: 4]设置成 0
	VREF_0P6: 芯片内部 0.6V 参考源, 与比较器中 DAC

的参考源相同	
VCCA_D5: 芯片的 VCC 电源电压 5 分压值	
AMPO: 运放 0 输出电压	
AMP1:运放1输出电压	
AMP2: 运放 2 输出电压	

18.5.16. **ADC_TRGS0**

Addr = 0x9E (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 4	DLYCYCO	通道 ODLY 的 ADC 时钟个数选择, 配置为 4n+1 0x0: 1 个 ADC 时钟周期 0x1: 5 个 ADC 时钟周期 0x2: 9 个 ADC 时钟周期 0x7: 29 个 ADC 时钟周期	RW	0x0
3: 0	TRGSELO	通道 0 硬件触发源选择 Ox0: 选择软件触发 Ox1: SUPER TIMERO PWM 上升沿 Ox2: SUPER TIMERO PWM 下降沿 Ox3: SUPER TIMERO 周期点 Ox4: SUPER TIMERO 零点 Ox5: SUPER TIMER2 PWM 上升沿 Ox6: SUPER TIMER2 PWM 下降沿 Ox7: SUPER TIMER2 周期点 Ox8: SUPER TIMER2 零点 Ox9: SUPER TIMER4 PWM 上升沿 OxA: SUPER TIMER4 PWM 上升沿 OxA: SUPER TIMER4 PWM 上升沿 OxA: SUPER TIMER4 PWM 下降沿 OxB: SUPER TIMER4 同期点 OxC: SUPER TIMER4 零点 OxD: SUPER TIMER4 零点 OxD: SUPER TIMER6 C点 OxE: GPIO 外部触发 OxF: TIMERO 降采样触发 特别注意: 当选择零点/周期点时,需要清除对应的	RW	0x0

标志位,具体请看外部触发源描述!!!

18.5.17. **ADC_TRGS1**

Addr = 0x9F (SFR)

Bit(s)	Name	Description	R/W	Reset
		通道 1DLY 的 ADC 时钟个数选择,配置为 4n+1	Kn°	
		0x0: 1 个 ADC 时钟周期		
7 4	DI VCVC1	0x1: 5 个 ADC 时钟周期	DW	00
7: 4	DLYCYC1	0x2: 9 个 ADC 时钟周期	RW	0x0
		-28		
		0x7: 29 个 ADC 时钟周期		
		通道1硬件触发源选择		
		0x0: 选择软件触发		
		Ox1: SUPER TIMERO PWM 上升沿		
		Ox2: SUPER TIMERO PWM 下降沿		
		Ox3: SUPER TIMERO 周期点		
		0x4: SUPER TIMERO 零点		
		Ox5: SUPER TIMER2 PWM 上升沿		
		Ox6: SUPER TIMER2 PWM 下降沿		
		Ox7: SUPER TIMER2 周期点		
3: 0	TRGSEL1	0x8: SUPER TIMER2 零点	RW	0x0
	1//	Ox9: SUPER TIMER4 PWM 上升沿		
	\- <u>-</u> \/	OxA: SUPER TIMER4 PWM 下降沿		
	/X 57	OxB: SUPER TIMER4 周期点		
	175	OxC: SUPER TIMER4 零点		
	-1(2)	OxD: SUPER TIMERO C点		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	米 '	0xE: GPIO 外部触发		
	y-	OxF: TIMERO 降采样触发		
		特别注意: 当选择零点/周期点时,需要清除对应的		
		标志位,具体请看外部触发源描述!!!		

18.5.18. **ADC_TRGS2**

Addr = OxA1 (SFR)

Bit(s)	Name	Description	R/W	Reset
		通道 2DLY 的 ADC 时钟个数选择,配置为 4n+1		
		0x0: 1 个 ADC 时钟周期		
7 4	DI VCVCO	0x1: 5 个 ADC 时钟周期	ADW.	00
7: 4	DLYCYC2	0x2: 9 个 ADC 时钟周期	RW	0x0
		0x7: 29 个 ADC 时钟周期		
		通道2硬件触发源选择		
		0x0: 选择软件触发		
		Ox1: SUPER TIMERO PWM 上升沿		
		Ox2: SUPER TIMERO PWM 下降沿		
		Ox3: SUPER TIMERO 周期点		
		0x4: SUPER TIMERO 零点		
		Ox5: SUPER TIMER2 PWM 上升沿		
		Ox6: SUPER TIMER2 PWM 下降沿		
		Ox7: SUPER TIMER2 周期点		
3 : 0	TRGSEL2	0x8: SUPER TIMER2 零点	RW	0x0
		Ox9: SUPER TIMER4 PWM 上升沿		
	4	OxA: SUPER TIMER4 PWM 下降沿		
	-\/	OxB: SUPER TIMER4 周期点		
	1-1	OxC: SUPER TIMER4 零点		
	XIL S	OxD: SUPER TIMERO C 点		
	1.27-75	OxE: GPIO 外部触发		
4	-12-3	OxF: TIMERO 降采样触发		
3	T	特别注意: 当选择零点/周期点时,需要清除对应的		
		标志位,具体请看外部触发源描述!!!		

18.5.19. **ADC_CMPDATAH**

Addr = 0xA2 (SFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	CMPDATAH	数字比较器刹车的预设值,高 8bit	RW	0x0

18.5.20. **ADC_CMPDATAL**

Addr = 0xA3 (SFR)

Bit(s)	Name	Description	R/W	Reset		
7: 4	CMPDATAL	数字比较器刹车的预设值,低 4bit 当转换结果大于数字比较器刹车时,会触发刹车	RW	0x0		
1. 1	CMI DITTILL	事件	I(W	OAO		
		加速模式, 当通道 0 和通道 1 都选择同一个触发				
		源的时候,硬件会自动切换通道,提前保证通道				
3	SPEEDMODEEN	的建立时间能够满足.	RW	0x0		
		0x0: 关闭				
		0x1: 使能				
		通道2使能数字比较功能				
2	CMPEN2	0x0: 关闭	RW	0x0		
		0x1: 使能				
		通道1使能数字比较功能				
1	CMPEN1	0x0: 关闭	RW	0x0		
		0x1: 使能				
		通道0使能数字比较功能				
0	CMPENO -	0x0: 关闭	RW	0x0		
	75	0x1: 使能				

Note:只有一个预设值,所以当使能两个或以上的通道数字刹车时,只有一个预设值,所有通道共用一个预设值.

18.6. 使用流程说明

- 1) 配置 ADC_CFG1 的 ADCPRE,设定 ADC 时钟分频
- 2) 配置 ADC_CFGO 使能通道转换
- 3) 配置 ADC_CFG2 配置采样时间

- 4) 配置 ADC CHSO/ADC CHS1 配置模拟转换通道和触发源
- 5) 配置 ADC CFGO 使能 ADC
- 6) 等待 20us (等待期间不能触发 ADC 转换)
- 7) 触发 ADC
- 8) 等待 ADC STA 中对应的通道的 pending 为高
- 9) ADC DATAHO/ADC DATAH1 的转换结果

19.模拟比较器(CMP0/1)

19.1. 功能概述

- 模块功能结构
 - ▶ 主要包括 2 个 8 bit flash DAC, 2 个比较器, 1 路 20mA恒流源输出
- 比较器正端和负端可选多种输入通路
 - ▶ 每个比较器正端可选择 6 路端口 (AIO) 输入和 1 路PGA输入
 - ▶ 负端可选择 2 路端口 (AIO) 输入和DAC输入
 - ▶ 比较器 0 正端还支持阈值短路保护输入
 - ▶ 比较器 1 支持CCS采样电压输入
- 参考电压可选
 - ▶ DAC的参考电压可选择内部 1. 2V参考或者VCCA参考, 输出为 1. 2/240*(1~240) 或者VCCA/240*(1~240)
- 短路保护功能
 - ▶ 内置 2 路阈值短路保护(可选VCCA-VTH或者PAD-VTH),其中VTH档位调节输出电压可选为 80mv/200mv/320mv/480mv。
- 恒流源功能
 - ▶ 1 路 6bit校准精度为 2.5%的 20mA恒流源输出, TYP输出范围: -40.5~+42%
- 迟滞功能
 - ▶ 2 路比较器支持单边(正/负)和双边(正负)模拟迟滞控制,迟滞电压可选为 10mv/20mv/60mv。
 - ▶ 支持数字迟滞控制,迟滞采样间隔 16 个档位可选,步长 1 微秒和 16 微秒可选;
 - ➤ 数字迟滞电压可在 1.2/240*(1~240)或者VCCA/240*(1~240)内选择;
- 数字滤波功能
 - ▶ 支持数字滤波,滤波时间共256档位选择,步长为1微秒;
- 中断与唤醒功能
 - ▶ 支持输出改变产生中断;
 - > 支持比较器唤醒睡眠状态
- 比较器与系统其他模块联动功能

- ▶ 比较器使能可由内部PWM控制
- ▶ 比较器输出可作为增强型PWM模块的刹车触发信号;
- ▶ 比较器的数字输出可以映射到任意I0引脚

19.2. 模块框图

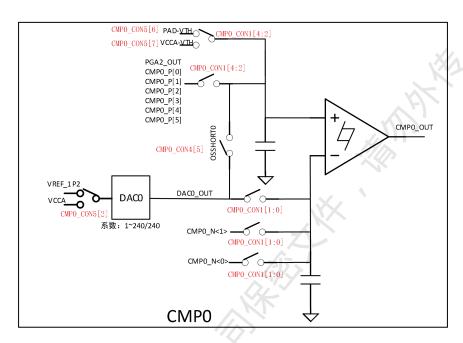


图 19-1 比较器 0 模块内部结构图

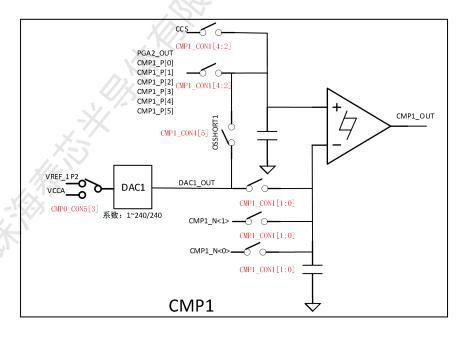


图 19-2 比较器 1 模块内部结构图

19.3. 引脚复用映射表

表 19-1 CMP 引脚复用映射表

引脚复用名字		负端通道选择	正端通道选择	关闭数字	使能比较器模	GPI0
		CMPx_CON1[1:0]	CMPx_CON1[4:2]	10 功能	拟复用功能	
CMP0	COP0	/	0x01	P06MD=3	PO6AIOEN=1	P06
	COP1	/	0x02	P07MD=3	PO7AIOEN=1	P07
	COP2	/	0x03	P10MD=3	P10AI0EN=1	P10
	COP3	/	0x04	P03MD=3	PO3AIOEN=1	P03
	COP4	/	0x05	P23MD=3	P23AIOEN=1	P23
	COP5	/	0x06	P26MD=3	P26AIOEN=1	P26
	CONO	0x01	/	P05MD=3	PO5AIOEN=1	P05
	CON1	0x02	/ 4	P04MD=3	PO4AIOEN=1	P04
	C1P0	/	0x01	P13MD=3	P13AIOEN=1	P13
CMP1	C1P1	/	0x02	P12MD=3	P12AIOEN=1	P12
	C1P2	/	0x03	P11MD=3	P11AIOEN=1	P11
	C1P3	1 //	0x04	P02MD=3	PO2AIOEN=1	P02
	C1P4		0x05	P23MD=3	P23AIOEN=1	P23
	C1P5	1/1	0x06	P26MD=3	P26AIOEN=1	P26
	C1NO	0x01	/	P14MD=3	P14AIOEN=1	P14
	C1N1	0x02	/	P01MD=3	PO1AIOEN=1	P01
阈值比较	DACMP	/	/	P15MD=3	/	P15
恒流源	CCS	/	/	P16MD=3	/	P16

NOTE: 选择引脚作为通道必须把 IO 的模拟使能打开,即配置相应的 PTx_AIOEN,具体请参照第 9 章节关于 I/O 复用部分的描述!

19.4. 功能配置流程图

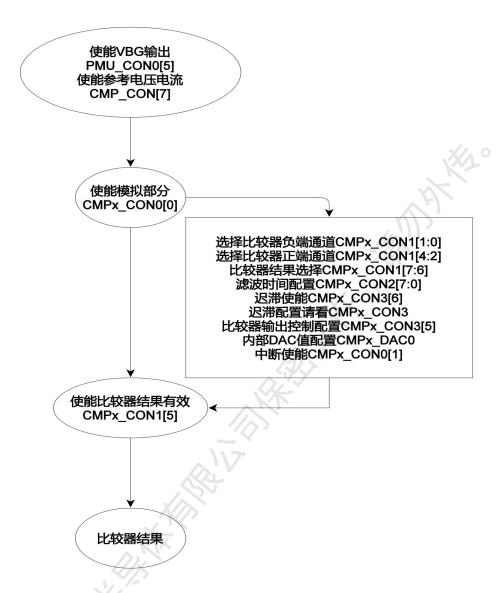


图 19-3 比较器使用配置流程说明图

Note: 图中 CMPx CON1 是指 CMP0 CON1 和 CMP1 CON1!

19.5. 基本功能使用说明

19.5.1.比较器工作模式使用说明

比较器工作模式分为两种比较情况:

第一种比较器工作情况是比较器外部正端输入和外部负端输入的信号之间的比较;

第二种比较器工作情况是比较器外部正端输入和内部负端选择的信号之间的比较;

如果是第一种外部正端和外部负端之间的比较,则配置流程如下:

(1) 选择比较器正端和负端的功能复用引脚:参照本章内容中关于引脚复用映射表的内容配置比较器 0 和比较器 1 的正端和负端的功能复用引脚,每个比较器的正端最多可以选择 5 个输入引脚通路,负端最多可以选择 2 个输入引脚通路;

以比较器 0 的配置举例,具体代码配置如下:

//关闭比较器 0 复用功能引脚的数字 I0 功能

PO MD1 |= (0x3<<4) | (0x3<<2) ; //关闭 CONO (PO5), COPO (PO6) 的数字 IO 功能

PO AIOEN = 0x60; //使能 P05, P06 模拟比较器复用功能

//比较器 0 正端输入通道选择 P06, 负端输入通道选择 P05

CMPO_CON1= (CMPO_CON1 & ~(0x3<<0)) | (0x1<<0); //负端选择 P05

CMPO_CON1= (CMPO_CON1 & ~(0x7<<2)) | (0x1<<2); //正端选择 P06

(2) 使能比较器的参考电压参考电流,比较器模拟部分,建立稳定状态;

以比较器 0 的配置举例,具体代码配置如下:

PMU CONO |= 0x1<<5; //使能 VBG06_REF 输出

CMP_CON |= 0x1<<7; //使能比较器参考电压参考电流

CMPO CONO |= 0x1<<0; //使能比较器模拟部分,建立稳定状态

(3) 根据用户需要配置使能比较器的 P 管和 N 管,如果想简单使用,就把 P 管和 N 管都使能;以比较器 0 的配置举例,具体代码配置如下:

CMPO CON4 &= ~(0x1<<4); //打开比较器的 N 管

CMPO_CON4 &= ~(0x1<<6); //打开比较器的 P 管

重要说明:以 VCC/2 为基准,共模电压比较低的时候选择使能 P 管,共模电压比较高的时候选择使能 N 管;

- (4) 根据用户实际应用需要,配置比较器的模拟迟滞,数字迟滞,数字滤波等功能;
- (5) 用户读取比较器的比较结果,也可以使能比较器的中断,产生中断;也可以将比较器的结果通过选择任意 I0 中的一个引脚输出;

如果是第二种外部正端输入信号和内部负端输入信号之间的比较,则配置流程如下:

(1) 选择比较器正端功能复用引脚:参照本章内容中关于引脚复用映射表的内容配置比较器 0 和比较器 1 的正端功能复用引脚,每个比较器的正端最多可以选择 5 个输入引脚通路;以比较器 0 的配置举例,具体代码配置如下:

//关闭比较器 0 复用功能引脚的数字 IO 功能

PO MD1 |= (0x3<<4) ; //关闭 COPO (P06)的数字 IO 功能

PO AIOEN = 0x40; //使能 PO6 模拟比较器复用功能

//比较器 0 正端输入通道选择 P06

(2) 使能比较器的参考电压参考电流,比较器模拟部分,建立稳定状态;

以比较器 0 的配置举例,具体代码配置如下:

PMU CONO |= 0x1<<5; //使能 VBG06 REF 输出

CMP CON |= 0x1<<7; //使能比较器参考电压参考电流

CMPO_CONO |= 0x1<<0; //使能比较器模拟部分,建立稳定状态

(3) 根据用户需要配置使能比较器的 P 管和 N 管,如果想简单使用,就把 P 管和 N 管都使能; 以比较器 0 的配置举例,具体代码配置如下:

CMPO CON4 &= ~(0x1<<4); //打开比较器的 N 管

CMPO CON4 &= ~(0x1<<6); //打开比较器的 P 管

重要说明:以 VCC/2 为基准,共模电压比较低的时候选择使能 P 管,共模电压比较高的时候选择使能 N 管;

(4) 选择 DACO 的参考源,配置比较器 DACO 的电压值,DACO 的电压值等于参考源/OxFO*CMPO DHYH,DAC 默认参考电压是 VCCA;

以比较器 0 的配置举例,具体代码配置如下:

//选择内部 VCCA 作为参考源

CMPO CON5= (CMPO CON5 & $^{\sim}(0x1 << 3)$) | (0x1 << 3);

//配置比较器 0 DACO 的电压值,则负端输入比较信号的电压值为: (0x78*VCCA)/0xF0 CMP0 DHYH = 0x78;

重要说明: 当比较器正端引脚和负端的 DAC 设置的电压值进行比较功能时,以及需要比较器使用数字迟滞功能(通过设置比较器 CMP0_DHYH 和 CMP0_DHYL 设置迟滞窗口)这两种情况下需要配置比较器 DAC 的电压值这一步骤; 当比较器的正端引脚和负端引脚两种进行比较时,不需要配置 DAC 电压值这一步骤;

- (5) 根据用户实际应用需要,配置比较器的模拟迟滞,数字迟滞,数字滤波等功能;
- (6) 用户读取比较器的比较结果,也可以使能比较器的中断,产生中断,也可以将比较器的结果通过选择任意 I0 中的一个引脚输出,

19.5.2.短路保护功能使用说明

短路保护功能主要是用来监测用户应用方案中如 MOS 管是否短路烧掉这种需要检测短路和保护的应用场景。系统检测到 MOS 管短路就产生刹车型号刹车 PWM, 避免烧坏 MOS 管。

(1) 短路保护功能是集成在模拟比较器 0 里面的功能,此时比较器 0 的正端输入选择短路检测功能通路即 CMP0 CON1[4:2]=0x7;

- (2) 短路检测功能可以检测内部 VCC 和外部 P15 两种,可以通过配置 CMP0_CON5[7]=1,使能检测 VCC 通路或者配置 CMP0_CON5[6]=1,使能检测 P15 外部通路; VCC 或者 P15 连接到被检测对象如 MOS 管近电源的端点;
- (3) 根据应用的检测需要,可以通过被检测对象如 MOS 管的特性来配置 CMP0_CON5[5:4]来 选择阈值电压 VTH 档位调节输出电压可选为 80mv/200mv/320mv/480mv 这 4 个档位,此时比较器 0 的正端的检测信号的电压为: VCC-VTH 或者 P15-VTH;
- (4) 比较器 0 的负端输入选择外部某个引脚,该引脚连接到被检测对象如 MOS 管的近地的端点:
- (5) 使能比较器的参考电压参考电流,比较器模拟部分,建立稳定状态;
- (6) 具体代码配置如下:

PMU_CONO |= 0x1<<5; //使能 VBG06_REF 输出

CMP CON |= 0x1<<7; //使能比较器参考电压参考电流

CMPO CONO |= 0x1<<0; //使能比较器模拟部分,建立稳定状态

- (7) 根据用户实际应用需要,配置比较器的迟滞,滤波等功能;
- (8) 用户读取比较器的比较结果来判断被检测对象如 MOS 管是否短路,如果短路可以直接输出到 PWM 进行刹车操作,以达到保护 MOS 管的目的;

19.5.3. 恒流源功能使用说明

注意:比较器恒流源功能在芯片出厂前会经过校准,校准值会存放到NVR存储器的某个固定地址,SDK中的系统初始化部分会读取出来校准值,并配置到CMP_CON[5:0];

恒流源功能具体流程如下:

- (1) 关闭 CCS 恒流源复用引脚 P16 的数字 I0 功能:
 - $P1_{MD1} = 0x3 << 4;$
- (2) 打开恒流源功能使能:

CMP CON = 0x3 << 6;

重要说明:恒流源功能是集成在模拟比较器1里面的功能,在恒流源功能开启的时候,也可以结合比较器的功能一起使用,此时比较器1的正端输入选择CCS,比较器1的负端输入选择设置的内部设置的电压值,用于检测CCS驱动的外部通路的短路或者断路检测,从而在方案上实现短路和断路保护功能;

19.6. 寄存器列表

表 19-2 COMPO/1 register list

address	Register Name	Description
0xC8 (SFR)	CMPO_CONO	CMPO control register 0
0x143 (XSFR)	CMPO_CON1	CMPO control register 1
0x144 (XSFR)	CMPO_CON2	CMPO control register 2
0x145 (XSFR)	CMPO_CON3	CMPO control register 3
0x146 (XSFR)	CMPO_CON4	CMPO control register 4
0x149 (XSFR)	CMPO_CON5	CMPO control register 5
0x147 (XSFR)	CMPO_DHYH	CMPO Digital Hysteresis High Threshold Set Value
0x148 (XSFR)	CMPO_DHYL	CMPO Digital Hysteresis Low Threshold Set Value
0xF8 (SFR)	CMP1_CONO	CMP1 control register 0
0x14C(XSFR)	CMP1_CON1	CMP1 control register 1
0x14D(XSFR)	CMP1_CON2	CMP1 control register 2
0x14E(XSFR)	CMP1_CON3	CMP1 control register 3
0x14F(XSFR)	CMP1_CON4	CMP1 control register 4
0x150(XSFR)	CMP1_DHYH	CMP1 Digital Hysteresis High Threshold Set Value
0x151 (XSFR)	CMP1_DHYL	CMP1 Digital Hysteresis Low Threshold Set Value
0x140 (XSFR)	CMP_CON	Control the CMPO and CMP1
0x141 (XSFR)	CMP_STA	CMPO and CMP1 state register
0x14A(XSFR)	CMP_AHYCON	CMPO and CMP1 Analog Hysteresis Control Register

19.7. 寄存器详细说明

19.7.1. **CMP_CON**

Addr = 0x140 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	7	比较器的参考电压参考电流使能信号.		
7	REFEN	0x0: 不使能	RW	0x0
		0x1: 使能		
6	CCCEN	恒流源的使能信号.	DW	00
	CCSEN	0x0: 不使能	RW	0x0

		0x1: 使能		
		恒流源电流调节信号(step=2.5%)		
5: 0	TRIMIB	0x00: 11.8mA	RW	
		OxOF: 20mA		0x0
		0x3F: 28.4mA		

19.7.2. **CMP_AHYCON**

Addr = 0x14A (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	CMPO_HYSPNS_VDD	比较器 0 的输入正负迟滞选择信号 0x0: disable 迟滞输出 0x1: 正迟滞输出 0x2: 负迟滞输出 0x3: 正负迟滞输出	R/W	0x0
5: 4	CMPO_HYSVTH_VDD	比较器 0 的迟滞电压选择 0x0: 0mv 0x1: 10mv 0x2: 20mv 0x3: 60mv Note: CMP1_HYSPNS_VDD=0x0 的时候, CMP0_HYSVTH_VDD 必须选择等于 0x0;	R/W	0x0
3: 2	CMP1_HYSPNS_VDD	比较器 1 的输入正负迟滞选择信号 0x0: disable 迟滞输出 0x1: 正迟滞输出 0x2: 负迟滞输出 0x3: 正负迟滞输出	R/W	0x0
1: 0	CMP1_HYSVTH_VDD	比较器 1 的迟滞电压选择 0x0: 0mv 0x1: 10mv 0x2: 20mv 0x3: 60mv	R/W	0x0

Note: 模拟迟滞控制!

19.7.3. **CMP_STA**

Addr = 0x141 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		比较器 1 数字信号 wakeup 使能	X7°	
7	CMP1WKUPEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		比较器 0 数字信号 wakeup 使能		
6	CMPOWKUPEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		比较器 1 模拟 WAKEUP 取反功能使能		
5	CMP1ANAINVEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		比较器 0 模拟 WAKEUP 取反功能使能		
4	CMPOANAINVEN	0x0: 不使能	RW	0x0
		0x1: 使能		
		比较器 1 模拟信号 WAKEUP 使能		
3	CMP1ANAWKP	0x0: 不使能	RW	0x0
		0x1: 使能		
		比较器 0 模拟信号 WAKEUP 使能		
2	CMPOANAWKP	0x0: 不使能	RW	0x0
	X=5	0x1: 使能		
1	CMP1PNDCLR	比较器1中断标志位,写1清零	RW	0x0
0	CMPOPNDCLR	比较器0中断标志位,写1清零	RW	0x0

19.7.4. **CMP0_CON0**

Addr = 0xC8 (SFR)

Bit(s)	Name	Description	R/W	Reset
7 : 5	CMPINTS	比较器输出结果产生中断触发方式控制寄存器	RW	0x0

		0x0: 上升沿		
		0x1: 下降沿		
		0x2: 双边沿		
		0x3: 高电平		
		0x4: 低电平		
4	-		1	-
		比较器结果取反使能	/	
3	INVENA	0x0: 不使能	RW	0x0
		0x1: 使能		
2	CMPOUT	比较器的比较结果,只读	RO	0x0
		中断使能信号		
1	INTENA	0x0: 不使能	RW	0x0
		0x1: 使能		
		比较器使能信号		
0	ENA	使能之后还需要使能数字部分, 比较器才正常工作	DW	00
		0x0: 不使能	RW	0x0
		0x1: 使能		

19.7.5. **CMP0_CON1**Addr = 0x143 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	<i>\(\)</i>	比较器结果选择位.		
7 6	CMD E CEI	0x0: 比较器输出数字滤波器滤波后的结果	DW	00
7 : 6	CMP_F_SEL	0x1: 比较器输出同步后的结果	RW	0x0
	175	0x2: 比较器输出迟滞采样结果		
	OUTPUT_EN	控制比较器结果是否输出控制位		
5		0x0: 不输出,结果保持关闭输出前的值	RW	0x0
		0x1: 输出		
		比较器 0 正端输入通道选择.		
4: 2	CHECE	OxO: CMP_PGA (PGA2的输出)	RW	0x0
	CHPSEL	0x1: CMPO_P<0> (P06)		
		0x2: CMP0_P<1> (P07)		

		0x3: CMP0_P<2> (P10)			
		0x4: CMP0_P<3> (P03)			
		0x5: CMPO_P<4> (P23)			
		0x6: CMPO_P<5> (P26)			
		Ox7: VTH_OUT_VCC(VTH_PADEN=0)/			
		VTH_OUT_PAD(VTH_PADEN=1) (P15)			
		比较器 0 负端输入通道选择		/	
		0x0: 不使能	· ·	N.	
1: 0	CHNSEL	0x1: CMPO_N<0> (P05)	KIT	RW	0x0
		0x2: CMP0_N<1> (P04)			
		0x3: DACO_OUT	4/10		

19.7.6. **CMP0_CON2**

Addr = 0x144 (XSFR)

Bit(s)	Name	Description	R/W	Reset		
7 : 0	FILT_NUM	滤波时钟个数设置,最大值 256, 步长为 1 微秒	RW	0x0		
19.7.7. CMP0_CON3 Addr = 0x145 (XSFR)						
Bit(s)	Name	Description	R/W	Reset		

Bit(s)	Name	Description	R/W	Reset
		选择迟滞信号是否经过滤波器		
7	HYSEL	0x0: 经过滤波后的信号	RW	0x0
	XX	0x1: 滤波前的同步信号		
6	HVCDN	比较器 0 迟滞功能使能位,通过 CMPO_DHYH 和	DW	0.0
б	HYSEN	CMPO_DHYL 的两个寄存器控制阈值	RW	0x0
\sim	\$/P	比较器输出控制选择		
5	CMPENS	0x0:比较器是否输出由 OUTPUT_EN 决定	RW	0x0
		0x1: 比较器是否输出由 PWM 控制		
		迟滞计数源选择		
4	HYSRCSEL	OxO: 1M 时钟	RW	0x0
		0x1: 64K 时钟		

		迟滞计数器,用来设置迟滞采样间隔,步长为 16		
		微秒和1微秒可选		
2 0	CMDOHNCNT	0x0: 间隔 1 个周期采样	DW	0.0
3: 0	СМРОНУСТТ	0x1: 间隔2个周期采样	RW	0x0
		0xF: 间隔 16 个周期采样		

19.7.8. **CMP0_CON4**

Addr = 0x146 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		内部 DAC 的输出测试使能信号.		
7	DACTSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		关闭 P 管使能		
6	NONLY	0x0: 打开 P 管	RW	0x1
		0x1: 关闭 P 管		
	OSSHORT	短路使能		
5		短接比较器正负端,用于比较器校准	RW	0x0
Э		0x0: 不短接正负端		
		0x1: 短接正负端		
	PONLY	关闭 N 管使能		
4		0x0: 打开 N 管	RW	0x0
		0x1: 关闭 N 管		
3: 0		比较器0校正值		
	TRIM	芯片上电会自动填入出厂校验值,也可用户填入校验	RW	0x0
	-1(5)	值		

注意: 共模电压(比较器两端的电压)比较低(低于 1/2VCC)时应关闭 N 管打开 P 管, 共模电压比较高时应关闭 P 管打开 N 管,如果电压在 $0^{\sim}VCC$ 之间,需两个同时打开。注意: CMP0 默认只打开 P 管,CMP1 默认只打开 N 管。

19.7.9. **CMP0_CON5**

Addr = 0x149 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		VCC 短路保护阈值(VCC-0. 08/0. 2/0. 32/0. 48)输		
7	VTH VCCEN	入使能信号.	RW	0x0
'	VIII_VCCEN	0x0: 不使能	I\W	UXU
		0x1: 使能		
		P15 短路保护阈值(P15-0.08/0.2/0.32/0.48)输		
	UTIL DADDA	入使能信号.	(ADIV	0.0
6	VTH_PADEN	0x0: 不使能	RW	0x0
		0x1: 使能		
	CMPVTHS	比较器内置阈值选择.		
		0x0: VCC/P15 -80mv		
5 : 4		0x1: VCC/P15 -200mv	RW	0x0
		0x2: VCC/P15 -320mv		
		0x3: VCC/P15 -480mv		
		比较器 1 的 DAC 的输入参考电压选择信号.		
3	DAC1VREFSEL	0x0:选择内部 1.2V 作为参考电压	RW	0x0
		0x1: 选择内部 VCCA 作为参考电压		
2		比较器 0 的 DAC 的输入参考电压选择信号.		
	DACOVREFSEL	0x0: 选择内部 1.2V 作为参考电压	RW	0x0
		0x1:选择内部 VCCA 作为参考电压		
1: 0	_	-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X	_	_

19.7.10. **CMP0_DHYH**

Addr = 0x147 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		比较器 0 的数字迟滞窗口高阈值设置寄存器		
		选择 1.2V 参考时 Step=5mV, 0x00~0xF0 对应转换输		
7: 0	СМРОДНУН	出为 0~1. 2V, 0xF0~0xFF 转换输出为 1. 2V, 当选择	DW	0x0
7: 0	CMF ODITII	VCCA 参考时, 同 1.2V 参考等比例换算即可。	RW	UXU
		CMPO_CON5[2]选择 DAC 的参考源!		
		Note: 如果不开启数字迟滞,本寄存器即为比较器		

内置 DAC 的输入;	(比较器内置 DAC 设置值复用该	
寄存器)		

19.7.11. **CMP0_DHYL**

Addr = 0x148 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0 CMPOI		比较器 0 的数字迟滞窗口低阈值设置寄存器		
	CMDODINI	选择 1.2V 参考时 Step=5mV, 0x00~0xF0 对应转换输	DW	0.0
	CMPODHYL	出为 0~1.2V, 0xF0~0xFF 转换输出为 1.2V, 当选择	RW	Reset
		VCCA 参考时,同 1.2V 参考等比例换算即可		

19.7.12. **CMP1_CON0**

Addr = 0xF8 (SFR)

Bit(s)	Name	Description	R/W	Reset
		比较器输出结果产生中断触发方式控制寄存器		
		0x0: 上升沿		
7 -	CMDINTC	0x1: 下降沿	DW	0.0
7: 5	CMPINTS	0x2: 双边沿	RW	0x0 - 0x0 0x0
		0x3: 高电平		
		0x4: 低电平		
4	'/	_	ı	_
	7-5	比较器结果取反使能		
3	INVENA	0x0: 不使能	RW	0x0
	17)	0x1: 使能		
2	CMPOUT	比较器的比较结果,只读	RO	0x0
X	1	中断使能信号		
1	INTENA	0x0: 不使能	RW	0x0
		0x1: 使能		
		比较器使能信号		
0	ENA	使能之后还需要使能数字部分,比较器才正常工作	RW	0x0
		0x0: 不使能		

		1 !	i I
	41.44	1 !	1 1
	0x1: 使能	1 !	i I
	Ux1: 1史形	1 !	1
i			1 .

19.7.13. **CMP1_CON1**

Addr = 0x14C (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	CMP_F_SEL	比较器结果选择位 0x0: 比较器输出数字滤波器滤波后的结果 0x1: 比较器输出同步后的结果 0x2: 比较器输出迟滞采样结果	RW	0x0
5	OUTPUT_EN	控制比较器结果是否输出控制位 0x0:不输出,结果保持关闭输出前的值 0x1:输出	RW	0x0
4: 2	CHPSEL	比较器 1 正端输入通道选择 0x0: CMP_PGA (PGA2 的输出) 0x1: CMP1_P<0> (P13) 0x2: CMP1_P<1> (P12) 0x3: CMP1_P<2> (P11) 0x4: CMP1_P<3> (P02) 0x5: CMP1_P<4> (P23) 0x6: CMP1_P<5> (P26) 0x7: CCS (P16)	RW	0x0
1: 0	CHNSEL	比较器 1 负端输入通道选择 0x0: 不使能 0x1: CMP1_N<0> (P14) 0x2: CMP1_N<1> (P01) 0x3: DAC1_OUT	RW	0x0

19.7.14. **CMP1_CON2**

Addr = Ox14D (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	FILT_NUM	滤波时钟个数设置,最大值 256,步长为 1 微秒	RW	0x0

19.7.15. **CMP1_CON3**

Addr = 0x14E (XSFR)

Bit(s)	Name	Description	R/W	Reset
		选择迟滞信号是否经过滤波器		
7	HYSEL	0x0: 经过滤波后的信号	RW	0x0
		0x1:滤波前的同步信号	(L°	
	INCON	比较器 1 迟滞功能使能位,通过 CMP1_DHYH 和	DW	0.0
6	HYSEN	CMP1_DHYL 的两个寄存器控制阈值	RW	0x0
		比较器输出控制选择		
5	CMPENS	0x0:比较器是否输出由 OUTPUT_EN 决定	RW	0x0
		0x1: 比较器是否输出由 PWM 控制		
	HYSRCSEL	迟滞计数源选择		
4		0x0: 1M 时钟	RW	0x0
		0x1: 64K 时钟		
		迟滞计数器,用来设置迟滞采样间隔,步长为16		
		微秒和1 微秒可选		
2 0	CMD11N/CMT	0x0: 间隔 1 个周期采样	DW	0.0
3: 0	CMP1HYCNT	0x1: 间隔 2 个周期采样	RW	0x0
		XIII		
		0xF: 间隔 16 个周期采样		

19.7.16. **CMP1_CON4**

Addr = 0x14F (XSFR)

Bit(s)	Name	Description	R/W	Reset
A)	K.	内部 DAC 的输出测试使能信号,		
7	DACTSEN	0x0: 关闭	RW	0x0
		0x1: 打开		
		关闭 P 管使能		
6	NONLY	0x0: 打开 P 管	RW	0x0
		0x1: 关闭 P 管		
5	OSSHORT	短路使能	RW	0x0

		0x0: 不使能		
		0x1: 使能		
		关闭 N 管使能		
4	PONLY	0x0: 打开 N 管	RW	0x1
		0x1: 关闭 N 管		
		比较器1校正值		
3: 0	TRIM	芯片上电会自动填入出厂校验值,也可用户填入校	RW	0x0
		验值	1	

注意: 共模电压 (比较器两端的电压) 比较低 (低于 1/2VCC) 时应关闭 N 管打开 P 管,共模电压比较高时应关闭 P 管打开 N 管,如果电压在 $0\sim VCC$ 之间,需两个同时打开。注意: CMP0 默认只打开 P 管,CMP1 默认只打开 N 管。

19.7.17. **CMP1_DHYH**

Addr = 0x150 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		比较器 1 的数字迟滞窗口高阈值设置寄存器		0x0
		选择 1.2V 参考时 Step=5mV, 0x00~0xF0 对应转换输	RW	
		出为 0~1.2V, 0xF0~0xFF 转换输出为 1.2V, 当选择		
7 0	CMP1DHYH CMP0_CON5[2]选择 DAC 的参考源	VCCA 参考时, 同 1.2V 参考等比例换算即可。		
7: 0		CMPO_CON5[2]选择 DAC 的参考源		
		Note: 如果不开启数字迟滞,本寄存器即为比较器		
		内置 DAC 的输入; (比较器内置 DAC 设置值复用该		
	2/	寄存器)		

19.7.18. **CMP1_DHYL**

Addr = 0x151 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		比较器 1 的数字迟滞窗口低阈值设置寄存器		
7 0	CMD1 DHVI	选择 1.2V 参考时 Step=5mV,0x00~0xF0 对应转换输		0.0
7: 0	CMP1DHYL	出为 0~1. 2V, 0xF0~0xFF 转换输出为 1. 2V, 当选择	RW	0x0
		VCCA 参考时,同 1.2V 参考等比例换算即可		

20.运放模块

20.1. 功能概述

- ▶内部集成3个运算放大器,支持OP,PGA和内部比较器工作模式
- ➤ PGA模式下多级可配置增益(设计理论值: 1/2/4/8/16/32/64/128/256/512),实际芯片由于受到封装绑线等因素会引入额外的等效电阻,导致输入电阻会偏大,所以计算增益的时候输入电阻Rin,需要在寄存器配置的输入电阻值加上一个等效电阻Rx(对于PGA0,PGA1,Rx约等于150欧姆;对于PGA2,Rx约等于250欧姆);
- ▶3个PGA都支持OP模式,外接电阻调节运放的放大增益
- > 支持正相放大和负相放大
- ▶ 支持内部比较器模式
- ▶ 支持多个PGA级联,获得更高的增益,用于小信号放大应用
- ▶3个运放的输出都可以输入到ADC的内部输入通道
- ➤ 运放PGA2 输出可以输入到比较器CMP1 的内部输入通道

20.2. 引脚复用表

表 21-1 运放引脚复用表

A C				
引脚复用	用运放名字	关闭数字 GPIO 功能	引脚	
	0P0_P	P21MD=0x3	P21	
PGA0	OPO_N	P22MD=0x3	P22	
	0P0_0	P23MD=0x3	P23	
1)	0P1_P	P30MD=0x3	P30	
PGA1	OP1_N	P27MD=0x3	P27	
4/4	0P1_0	P26MD=0x3	P26	
4	0P2_P	P25MD=0x3/P22MD=0x3	P25/P22	
PGA2	OP2_N	P16MD=0x3/P21MD=0x3	P16/P21	
	0P2_0	P24MD=0x3	P24	
	OPOUTF	P20MD=0x3	P20	

20.3. 基本运放功能

建议:对于简单应用运放的用户请直接阅读本章节就可以用起来,可以忽略后续章节的内容!

运放模块基本功能是基于默认的 OP 工作模式,需要用户根据应用方案的需求的放大增益来外接电阻实现,具体配置流程和代码如下:

(1) 关闭 OP 复用的对应的数字 GPIO 功能,关闭对应复用引脚上其他的模拟功能复用通路,具体复用关系详见本章节《21.2 引脚复用表》;

举例说明:

如果需要用 OPO, 则需要关闭 OPO_P[P21], OPO_N[P22], OPO_O[P23]对应的 P21, P22, P23 的数字 GPIO 功能关闭,即设置 P21MD=0x3, P22MD=0x3, P23MD=0x3;

如果需要使用 OPO, 则对应代码如下:

P2_MD0 |= (0x3<<6) | (0x3<<4) | (0x3<<2); //关闭 P21, P22, P23 数字 I0 功能 同理,如果需要使用 OP1,则对应代码如下:

```
P3_MD0 |= (0x3<<0); //关闭 P30 数字 I0 功能
```

P2_MD1 |= (0x3<<6) | (0x3<<4); //关闭 P26, P27 数字 I0 功能

同理,如果需要使用 OP2,则对应代码如下:

```
P1 MD1 |= (0x3<<4); //关闭 P16 数字 I0 功能
```

P2 MD1 |= (0x3<<2) | (0x3<<0); //关闭 P24, P25 数字 I0 功能

(2) 设置 OP 负相输入,正相输入,和输出端到 IO 的通路使能;

如果需要用 OPO,则对应代码如下:

```
AMP_CON8 |= 0x1<<5; //PGAO 的负相输入到 IO 的通路使能
```

AMP_CON9 |= 0x1<<5; //PGAO 的正相输入到 IO 的通路使能

AMP CON10 = 0x1<<3; //PGAO 的输出端口到 IO 的通路使能

同理,如果需要用 OP1,则对应代码如下:

AMP CON8 |= 0x1<<6; //PGA1 的负相输入到 IO 的通路使能

AMP CON9 |= 0x1<<6; //PGA1 的正相入到 IO 的通路使能

AMP CON10 |= 0x1<<4; //PGA1 的输出端口到 IO 的通路使能

同理,如果需要用 OP2,则对应代码如下:

AMP CON8 &= ~(0x3<<0); //关闭 PGA2 负相和正相输入默认连接 PGA0 的通路

 AMP_CON8
 |= 0x1<<7;</td>
 //PGA2 的负相输入到 IO 的通路使能

 AMP_CON9
 |= 0x1<<7;</td>
 //PGA2 的正相输入到 IO 的通路使能

AMP_CON10 |= 0x1<<5; //PGA2 的输出端口到 IO 的通路使能

(3) 最后, 使能对应使用的运放模块;

```
如果需要使用 OPO, 则对应代码如下:
```

```
AMP\_CON11 = (AMP\_CON11 & ^(0x1<<0)) | (0x1<<0); // OPO 使能同理,如果需要使用 OP1,则对应代码如下:
```

 $AMP_CON11 = (AMP_CON11 & ^(0x1<<1)) | (0x1<<1); // OP1 使能$

同理,如果需要使用 OP2,则对应代码如下:

AMP_CON11 = (AMP_CON11 & ~(0x1<<2)) | (0x1<<2); //OP2 使能

20.4. 增强功能

建议:对于想深入使用运放各种功能的有一定能力的用户可以深入阅读本章节的内容,想简单应用运放的用户忽略本章节内容!

20.4.1.0P 工作模式使用说明

(1) 关闭 OP 复用的对应的数字 GPIO 功能,具体复用关系详见本章节《21.2 引脚复用表》; 举例说明:如果需要用 OPO,则需要关闭 OPO_P[P21],OPO_N[P22],OPO_O[P23]对应的 P21,P22,P23 的数字 GPIO 功能关闭,即设置 P21MD=0x3, P22MD=0x3, P23MD=0x3; 关闭 对应复用引脚上其他的模拟功能复用通路,即设置 P21AIOEN=0x0, P22AIOEN=0x0, P23AIOEN=0x0;

如果需要使用 OPO, 则对应代码如下:

```
P2\_MD0 |= (0x3<<6) | (0x3<<4) | (0x3<<2); //关闭 P21, P22, P23 数字 I0 功能 P2\_AIOEN = 0x0; //关闭 P21, P22, P23 其他模拟复用
```

同理,如果需要使用 OP1,则对应代码如下:

```
      P3_MD0 |= (0x3<<0);</td>
      //关闭 P30 数字 I0 功能

      P2_MD1 |= (0x3<<6) | (0x3<<4);</td>
      //关闭 P26, P27 数字 I0 功能

      P3_AIOEN = 0x0;
      //关闭 P30 其他模拟复用

      P2_AIOEN = 0x0;
      //关闭 P21, P22, P23 其他模拟复用
```

同理,如果需要使用 OP2,则对应代码如下:

```
      P1_MD1 |= (0x3<<4);</td>
      //关闭 P16 数字 I0 功能

      P2_MD1 |= (0x3<<2) | (0x3<<0);</td>
      //关闭 P24, P25 数字 I0 功能

      P1_AIOEN = 0x0;
      //关闭 P16 其他模拟复用

      P2_AIOEN = 0x0;
      //关闭 P24, P25 其他模拟复用
```

(2) 关闭内部反馈通路,即使能 OP 工作模式,默认是 OP 运放工作模式;如果需要用 OPO,则对应代码如下:

```
AMP CON7 &= ^{\sim}(0x1 << 5);
                                     //OPO 的 OP 工作模式使能
   同理,如果需要使用 OP1,则对应代码如下:
  AMP_CON7 &= ^{\sim}(0x1 << 6);
                                    //OP1 的 OP 工作模式使能
   同理,如果需要使用 OP2,则对应代码如下:
                                   //OP2的 OP 工作模式使能
  AMP CON7 &= ^{\sim} (0x1<<7);
(3) 设置 OP 负相输入,正相输入,输出端到 IO 的通路使能;
   如果需要用 OPO,则对应代码如下:
  AMP CON8 = 0x1 << 5;
                                //PGA0 的负相输入到 IO 的通路使能
  AMP\_CON9 = 0x1 << 5;
                               //PGA0 的正相输入到 IO 的通路使能
  AMP CON10 = 0x1 << 3;
                                //PGAO 的输出端口到 IO 的通路使能
   同理,如果需要用 OP1,则对应代码如下:
  AMP CON8 = 0x1 << 6;
                               //PGA1 的负相输入到 IO 的通路使能
                                //PGA1 的正相入到 IO 的通路使能
  AMP CON9 = 0x1 << 6;
                               //PGA1 的输出端口到 IO 的通路使能
  AMP CON10 = 0x1 << 4;
   同理,如果需要用 OP2,则对应代码如下:
   AMP CON8 &= ~(0x3<<0); //关闭 PGA2 负相和正相输入默认连接 PGA0 的通路
  AMP CON8 = 0x1 << 7;
                                //PGA2 的负相输入到 IO 的通路使能
  AMP\_CON9 = 0x1 << 7;
                               //PGA2 的正相输入到 IO 的通路使能
  AMP CON10 = 0x1 << 5;
                          //PGA2 的输出端口到 IO 的通路使能
(4) OP 的增益,是通过芯片外部的电阻(负相输入电阻和反馈电阻)来实现用户需要的放
  大增益倍数;
  OP 正相放大增益倍数计算公式为: Gain=(Rfb+Rin)/Rin;
  OP 负相放大增益倍数计算公式为: Gain=-Rfb/Rin;
   同理,如果需要用 OP1, OP2,则参照 OP0 的使用说明即可。
(5) 配置 OP 的偏置电流选择, 即配置对应的运放总电流, 输出级电流, 及 OFFSET 电流选择
   大电流或者小电流;
   如果需要使用 OPO, 则对应代码如下:
  //OPO 运放总电流选择大电流
  AMP CON1 = (AMP CON1 & ^(Ox1 << 0)) | (0x1 << 0);
  //OPO 运放输出级电流选择大电流
  AMP CON1 = (AMP CON1 & ^(0x1 << 1)) | (0x1 << 1);
  //OPO 运放 OFFSET 电流选择小电流
  AMP\_CON1 = (AMP\_CON1 & ^(0x1 << 2)) | (0x0 << 2);
```

同理,如果需要使用 OP1,则对应代码如下:

```
//OP1 运放总电流选择大电流
   AMP CON3 = (AMP CON3 & ^{\sim}(0x1 << 0)) | (0x1 << 0);
   //OP1 运放输出级电流选择大电流
   AMP CON3 = (AMP CON3 & ^{(0x1<<1)}) | (0x1<<1);
   //OP1 运放 OFFSET 电流选择小电流
   AMP CON3 = (AMP CON3 & ^(0x1 << 2)) | (0x0 << 2);
   同理,如果需要使用 OP2,则对应代码如下:
   //OP2 运放总电流选择大电流
   AMP CON5 = (AMP CON5 & (0x1 << 0)) | (0x1 << 0);
   //OP2 运放输出级电流选择大电流
   AMP\_CON5 = (AMP\_CON5 & ^(Ox1 << 1)) | (Ox1 << 1);
   //OP2 运放 OFFSET 电流选择小电流
   AMP CON5 = (AMP CON5 & ^{\sim}(0x1 << 2)) | (0x0 << 2);
(6) 最后, 使能对应使用的运放模块;
   如果需要使用 OPO,则对应代码如下:
   AMP_CON11 = (AMP_CON11 & ~(0x1<<0)) | (0x1<<0); // OPO 使能
   同理,如果需要使用 OP1,则对应代码如下:
   AMP_CON11 = (AMP_CON11 & ~(Ox1<<1)) | (Ox1<<1); // OP1 使能
   同理,如果需要使用 OP2,则对应代码如下:
   AMP_CON11 = (AMP_CON11 & ~(0x1<<2)) | (0x1<<2); //OP2 使能
```

20.4.2.PGA 工作模式使用说明

(1) 关闭 PGA 复用的对应的数字 GPIO 功能,具体复用关系详见本章节《21.2 引脚复用表》; 举例说明:如果需要用 PGAO,则需要关闭 OPO_P[P21],OPO_N[P22],OPO_O[P23]对应的 P21,P22,P23 的数字 GPIO 功能关闭,即设置 P21MD=0x3, P22MD=0x3, P23MD=0x3; 关闭 对应复用引脚上其他的模拟功能复用通路,即设置 P21AIOEN=0x0, P22AIOEN=0x0, P23AIOEN=0x0;

对应代码如下:

```
      P2_MD0 |= (0x3<<6) | (0x3<<4) | (0x3<<2); //关闭 P21, P22, P23 数字 I0 功能</td>

      P2_AI0EN = 0x0; //关闭 P21, P22, P23 其他模拟复用

      同理,如果需要使用 PGA1,则对应代码如下:

      P3_MD0 |= (0x3<<0); //关闭 P30 数字 I0 功能</td>

      P2_MD1 |= (0x3<<6) | (0x3<<4); //关闭 P26, P27 数字 I0 功能</td>

      P3_AI0EN = 0x0; //关闭 P30 其他模拟复用
```

```
P2 AIOEN = 0x0;
                                    //关闭 P21, P22, P23 其他模拟复用
   同理,如果需要使用 PGA2,则对应代码如下:
                                    //关闭 P16 数字 I0 功能
   P1\_MD1 = (0x3 << 4);
   P2 \text{ MD1} \mid = (0x3 << 2) \mid (0x3 << 0) ;
                                    //关闭 P24, P25 数字 I0 功能
   P1 AIOEN = OxO;
                                    //关闭 P16 其他模拟复用
   P2 AIOEN = 0x0;
                                    //关闭 P24, P25 其他模拟复用
(2) 使能内部反馈通路,即使能 PGA 工作模式,默认是 OP 运放工作模式;
   如果需要用 PGAO,则对应代码如下:
   AMP CON7 = 0x1 << 5;
                                    //PGAO 的 PGA 工作模式使能
   同理,如果需要使用 PGA1,则对应代码如下:
   AMP CON7 = 0x1 << 6;
                                    //PGA1 的 PGA 工作模式使能
   同理,如果需要使用 PGA2,则对应代码如下:
                                    //PGA2 的 PGA 工作模式使能
   AMP CON7 = 0x1 << 7;
(3) 设置 PGA 负相输入,正相输入,输出端到 IO 的通路使能;
   如果需要用 PGAO,则对应代码如下:
                                  //PGAO 的负相输入到 IO 的通路使能
   AMP CON8 = 0x1 << 5;
   AMP CON9 = 0x1 << 5;
                                  //PGA0 的正相输入到 IO 的通路使能
   AMP CON10 = 0x1 << 3;
                                 》//PGAO 的输出端口到 IO 的通路使能
   同理,如果需要用 PGA1,则对应代码如下:
                                //PGA1 的负相输入到 IO 的通路使能
   AMP CON8 \mid = 0x1 << 6;
                                 //PGA1 的正相输入到 IO 的通路使能
   AMP\_CON9 = 0x1 << 6;
                                 //PGA1 的输出端口到 IO 的通路使能
   AMP CON10 = 0x1 << 4;
   同理,如果需要用 PGA2,则对应代码如下:
   AMP CON8 &= ~(0x3<<0); //关闭 PGA2 负相和正相输入默认连接 PGA0 的通路
   AMP CON8
           = 0x1 << 7;
                                //PGA2 的负相输入到 IO 的通路使能
   AMP CON9 = 0x1 << 7;
                                //PGA2 的正相输入到 IO 的通路使能
   AMP CON10 = 0x1 << 5;
                                 //PGA2 的输出端口到 IO 的通路使能
(4) 配置 PGA 的增益, 通过选择内部的可配置电阻(负相输入电阻和反馈电阻)来实现用户
   需要的放大增益倍数;
   如果需要用 PGAO,则对应代码如下:
   //PGAO 内置负相输入电阻 Rin 选择 80K Ω
   AMP CON1 = (AMP CON1 & (0x7 << 5)) | (0x1 << 5);
   //PGA0 内置反馈电阻 Rfb 选择 320K Ω
   AMP\_CON1 = (AMP\_CON1 & ^(0x3 << 3)) | (0x2 << 3);
```

重要说明:实际芯片由于受到封装绑线等因素会引入额外的等效电阻,导致输入电阻会偏大,所以计算增益的时候输入电阻Rin,需要在寄存器配置的输入电阻值加上一个等效电阻Rx(对于PGA0,PGA1,Rx约等于150欧姆;对于PGA2,Rx约等于250欧姆);

这样配置 PGAO 正相放大增益倍数计算公式为:

Gain=(Rfb+Rin)/(Rin+Rx)=(320K+80K)/(80K+150)=4.99;

这样配置 PGAO 负相放大增益倍数计算公式为:

Gain = -Rfb/(Rin + Rx) = -320K/(80K + 150) = -3.99;

同理,如果需要用 PGA1, PGA2,则按照 PGA0 的配置对应配置即可,这里略去 PGA1, PGA2 的对应代码。

(5) 配置 PGA 的偏置电流选择,即配置对应的运放总电流,输出级电流,及 OFFSET 电流选择大电流或者小电流;

如果需要使用 PGAO,则对应代码如下:

```
//PGA0 运放总电流选择大电流
```

```
AMP\_CON1 = (AMP\_CON1 & ^(0x1<<0)) | (0x1<<0);
```

//PGA0 运放输出级电流选择大电流

```
AMP\_CON1 = (AMP\_CON1 & ^(Ox1 << 1)) | (Ox1 << 1);
```

//PGAO 运放 OFFSET 电流选择小电流

```
AMP CON1 = (AMP CON1 & ^(0x1 << 2)) | (0x0 << 2);
```

同理,如果需要使用 PGA1,则对应代码如下:

//PGA1 运放总电流选择大电流

```
AMP CON3 = (AMP CON3 & ^{(0x1<<0)}) | (0x1<<0);
```

//PGA1 运放输出级电流选择大电流

AMP CON3 =
$$(AMP CON3 & ^{(0x1<<1)}) | (0x1<<1);$$

//PGA1 运放 OFFSET 电流选择小电流

$$AMP_CON3 = (AMP_CON3 & ^(0x1 << 2)) | (0x0 << 2);$$

同理,如果需要使用 PGA2,则对应代码如下:

//PGA2 运放总电流选择大电流

```
AMP CON5 = (AMP CON5 & ^(0x1 << 0)) | (0x1 << 0);
```

//PGA2 运放输出级电流选择大电流

AMP CON5 = (AMP CON5 &
$$(0x1 <<1)$$
) | $(0x1 <<1)$;

//PGA2 运放 OFFSET 电流选择小电流

$$AMP_CON5 = (AMP_CON5 & ^(Ox1 << 2)) | (Ox0 << 2);$$

(6) 最后,使能对应使用的运放模块;

如果需要使用 PGAO, 则对应代码如下:

AMP CON11 = (AMP CON11 & $^{\sim}$ (0x1<<0)) | (0x1<<0); // PGAO 使能

同理,如果需要使用 PGA1,则对应代码如下:

AMP CON11 = (AMP CON11 & $^{\circ}$ (0x1<<1)) | (0x1<<1); // PGA1 使能

同理,如果需要使用 PGA2,则对应代码如下:

AMP CON11 = (AMP CON11 & (0x1 << 2)) | (0x1 << 2); // PGA2 使能

20.4.3.PGA+PGA 串联工作模式使用说明

该系列芯片支持 PGA0+PGA1, PGA1+PGA2, PGA0+PGA1+PGA2 三种串联工作模式。通过配置 寄存器 PGAOTO1EN【AMP CON7[0]】=1, 使能 PGAO 的输出到 PGA1 的输入; 通过配置寄存器 PGA1TO2EN【AMP CON7[1]】=1, 使能 PGA1 的输出到 PGA2 的输入;

具体举例 PGAO+PGA1 串联工作模式说明配置流程:

- (1) 参照 21.3.2 的 PGA 工作模式使用说明,独立配置 PGAO 和 PGA1;
- (2) 关闭 PGAO 的输出端口到 IO 的通路使能:

AMP CON10 &= $^{\sim}$ (0x1<<3);

//关闭 PGAO 的输出端口到 IO 的通路使能

- (3) 配置寄存器 PGAOTO1EN【AMP CON7[0]】=1, 使能 PGAO 的输出到 PGA1 的输入;
- (4) 关闭 PGA1 的负相输入到 IO 的通路和正相输入到 IO 的通路;

AMP CON8 &= $^{\sim}$ (0x1<<6);

//PGA1 的负相输入到 IO 的通路使能

AMP CON9 &= $^{\sim}$ (0x1<<6);

//PGA1 的正相输入到 IO 的通路使能

20.4.4.PGA+ADC 串联工作模式使用说明

该系列芯片支持 PGA0+ADC, PGA1+ADC, PGA2+ADC 串联工作模式,可以应用在外部被控制 信号内部放大后 ADC 采样的工作场景中。

具体举例 PGAO+ADC 串联工作模式说明配置流程:

- (1) 参照 21.3.2 的 PGA 工作模式使用说明,独立配置 PGAO;
- (2) 关闭 PGAO 的输出端口到 IO 的通路使能;

AMP CON10 &= ~(0x1<<3); //关闭 PGAO 的输出端口到 IO 的通路使能

(3) 参照本手册中关于模数转换器的功能配置说明配置 ADC,并通过配置 CHANOEXT 【ADC CHSO[5]】=1, CHANSELO【ADC CHSO[4:0]】=0x4, 选择 PGAO 的输出作为 ADC 的 输入采样信号:

20.4.5.PGA2+CMP 串联工作模式使用说明

该系列芯片支持 PGA2+CMP 串联工作模式,可用于经过 PGA2 内部放大以后的信号输出到芯片内部独立的比较器 CMP 的正端输入通道进行比较的应用场合。

具体配置流程说明:

- (1) 参照 21.3.2 的 PGA 工作模式使用说明,独立配置 PGA2;
- (2) 关闭 PGA2 的输出端口到 IO 的通路使能; AMP_CON10 &= ~(0x1<<5); //关闭 PGA2 的输出端口到 IO 的通路使能
- (3) 参照本手册中关于模数比较器的功能配置说明配置 CMPx, 并通过配置 CHPSEL 【CMPx CON1 [4:2]】=0,选择 PGA2 的输出作为 CMPx 的正端输入通道;

20.4.6.比较器工作模式使用说明

该芯片的运放模块内部集成了比较器功能,PGA0, PGA1, PGA2都可以独立工作在比较器功能模式。需要说明的是,第一种比较器模式是支持PGA放大以后的信号和 0.5*VCCA做比较,如果PGA放大以后的信号大于 0.5*VCCA,则比较器输出为 1,否则输出为 0;第二种比较器模式是PGA不打开增益配置通路,即 OP_P 端和 OP_N 端输入信号进行比较,如果 OP_P 端输入信号大于 OP N 端输入信号,则比较器输出 1,否则输出为 0;

以 PGAO 第一种比较器工作模式为例具体说明:

对应代码如下:

(1) 关闭 PGAO 复用的对应的数字 GPIO 功能,具体复用关系详见本章节《21.2 引脚复用表》; 关闭 OPO_P[P21],OPO_N[P22],OPO_O[P23]对应的 P21,P22,P23 的数字 GPIO 功能关闭, 即设置 P21MD=0x3, P22MD=0x3, P23MD=0x3; 关闭对应复用引脚上其他的模拟功能复用 通路,即设置 P21AIOEN=0x0, P22AIOEN=0x0, P23AIOEN=0x0;

P2_MD0 |= (0x3<<6) | (0x3<<4) | (0x3<<2); //关闭 P21, P22, P23 数字 I0 功能 P2_AIOEN = 0x0; //关闭 P21, P22, P23 其他模拟复用

- (2) 使能 PGAO 内部反馈通路,即使能 PGA 工作模式,默认是 OP 运放工作模式; AMP CON7 |= 0x1<<5; //PGAO 的 PGA 工作模式使能
- (3) 设置 PGAO 负相输入,正相输入,输出端到 IO 的通路使能;

 AMP_CON8
 |= 0x1<<5;</td>
 //PGAO 的负相输入到 IO 的通路使能

 AMP_CON9
 |= 0x1<<5;</td>
 //PGAO 的正相输入到 IO 的通路使能

 AMP CON10
 |= 0x1<<3;</td>
 //PGAO 的输出端口到 IO 的通路使能

(4) 配置 PGAO 的增益,通过选择内部的可配置电阻(负相输入电阻和反馈电阻)来实现用户需要的放大增益倍数;

//PGA0 内置负相输入电阻 Rin 选择 80K Ω

AMP_CON1 = (AMP_CON1 & ~(0x7<<5)) | (0x1<<5);

//PGA0 内置反馈电阻 Rfb 选择 320K Ω

AMP_CON1 = (AMP_CON1 & ~(0x3<<3)) | (0x2<<3);

这样配置 PGA0 正相放大增益倍数计算公式为: Gain=(Rfb+Rin)/Rin=(320+80)/80=5;

这样配置 PGA0 负相放大增益倍数计算公式为: Gain=-Rfb/Rin=-320/80=-4;

(5) 配置 PGA 的偏置电流选择,即配置对应的运放总电流,输出级电流,及 OFFSET 电流选择大电流或者小电流;

如果需要使用 PGAO,则对应代码如下:

//PGA0 运放总电流选择大电流

 $AMP_CON1 = (AMP_CON1 & ^(0x1 << 0)) | (0x1 << 0);$

//PGA0 运放输出级电流选择大电流

AMP CON1 = $(AMP CON1 & ^{(0x1 << 1)}) | (0x1 << 1);$

//PGAO 运放 OFFSET 电流选择小电流

 $AMP_CON1 = (AMP_CON1 & ^(0x1 << 2)) | (0x0 << 2);$

(6) 最后, 使能 PGAO 运放模块;

AMP CON11 = (AMP CON11 & ~(0x1<<0)) | (0x1<<0); // PGAO 使能

(7) PGAO 放大的同时,可以将放大的信号输入跟 0.5*VCCA 做内部比较,比较器的输出结果放到寄存器 AMPCMPOOUT【AMP_CONO[0]】,这样 CPU 可以通过读这个寄存器的值,来做过零检测应用。还可以配置 AMPCMPOIE【AMP_CONO[0]】=1,开启运放比较器的中断功能;还可以通过配置 TRIGSEL【AMP_CONO[6]】,来选择是比较器输出结果上升沿或者下降沿变化触发中断的功能;

以 PGAO 第二种比较器工作模式为例具体说明:

(1) 关闭 PGAO 复用的对应的数字 GPIO 功能,具体复用关系详见本章节《21.2 引脚复用表》; 关闭 OPO_P[P21], OPO_N[P22], OPO_O[P23] 对应的 P21, P22, P23 的数字 GPIO 功能关闭, 即设置 P21MD=0x3, P22MD=0x3, P23MD=0x3; 关闭对应复用引脚上其他的模拟功能复用 通路,即设置 P21AIOEN=0x0, P22AIOEN=0x0, P23AIOEN=0x0; 对应代码如下:

 P2_MD0 |= (0x3<<6) | (0x3<<4) | (0x3<<2); //关闭 P21, P22, P23 数字 I0 功能</td>

 P2_AIOEN = 0x0; //关闭 P21, P22, P23 其他模拟复用

- (2) 使能 PGAO 内部反馈通路,即使能 PGA 工作模式,默认是 OP 运放工作模式; AMP CON7 |= 0x1<<5; //PGAO 的 PGA 工作模式使能
- (3) 设置 PGAO 负相输入,正相输入到 IO 的通路使能;

AMP CON8 |= 0x1<<5; //PGAO 的负相输入到 IO 的通路使能

AMP CON9 |= 0x1<<5; //PGAO 的正相输入到 IO 的通路使能

(4) 配置 PGA 的偏置电流选择,即配置对应的运放总电流,输出级电流,及 OFFSET 电流选择大电流或者小电流;

如果需要使用 PGAO, 则对应代码如下:

//PGA0 运放总电流选择大电流

AMP CON1 = $(AMP CON1 & ^(0x1 << 0)) | (0x1 << 0);$

//PGA0 运放输出级电流选择大电流

 $AMP_CON1 = (AMP_CON1 & ^(0x1 << 1)) | (0x1 << 1);$

//PGAO 运放 OFFSET 电流选择小电流

AMP CON1 = (AMP CON1 & (0x1 << 2)) | (0x0 << 2);

(5) 最后, 使能 PGAO 运放模块;

AMP CON11 = (AMP CON11 & ~(0x1<<0)) | (0x1<<0); // PGAO 使能

(6) PGAO 的 OPO_P 端和 OPO_N 端输入做比较,如果 OPO_P 大于 OPO_N,则比较器输出 1,否则输出 0。比较器的输出结果放到寄存器 AMPCMPOOUT【AMP_CONO[0]】,这样 CPU 可以通过读这个寄存器的值来做其他应用处理。还可以配置 AMPCMPOIE【AMP_CONO[0]】=1,开启运放比较器的中断功能;还可以通过配置 TRIGSEL【AMP_CONO[6]】,来选择是比较器输出结果上升沿或者下降沿变化触发中断的功能;

20.4.7.关于 PGA 正相放大和负相放大的使用说明

重要说明:实际芯片由于受到封装绑线等因素会引入额外的等效电阻,导致输入电阻会偏大,所以计算增益的时候输入电阻Rin,需要在寄存器配置的输入电阻值加上一个等效电阻Rx(对于PGA0,PGA1,Rx约等于150欧姆;对于PGA2,Rx约等于250欧姆);

- 正相放大时, OPx_N端需要接地, OPx_P端输入信号,放大增益公式为 Gain=(Rfb+Rin)/(Rin+Rx)。注意此运放为单电源运放, Vout 不能输出负电压, OPx_P 端输入AC信号时需要带偏置,且偏置电压也会被放大;
- 负相放大时,OPx_N端输入信号,OPx_P端需要接内部偏置,放大增益公式为Gain=-Rfb/(Rin+Rx)。注意此运放为单电源运放,Vout 不能输出负电压,OPx_P端接内部提供1.2V和1.05V的偏置电压,或自行外灌偏置电压,OPx_N端输入AC信号时,注意添加隔直电容,输入DC信号时,正常输入即可;

20.4.8.关于运放内部偏置选择配置使用说明

该芯片内部 PGA0, PGA1, PGA2 都支持正相输入端口(0P0/1/2_P 端)选择内部偏置电压,偏置电压内部可以提供 1.2V 和 1.05V 的选择。当被放大信号为交流小信号,一定要开启运放内部偏置功能,否在运放不能正常工作!

具体选择的代码如下:

● 1.05V 偏置电压连接到 PGA 的正相输入端口:

```
      SYS_CON8
      |= (1<<1);</td>
      // PMU_1.05V to PGA_P

      AMP_CON10
      |= 0x1<<0;</td>
      //PGA0 的正相输入端口选择内部偏置

      AMP_CON10
      |= 0x1<<1;</td>
      //PGA1 的正相输入端口选择内部偏置

      AMP_CON10
      |= 0x1<<2;</td>
      //PGA2 的正相输入端口选择内部偏置
```

● 1.2V 偏置电压连接到 PGA 的正相输入端口:

20.5. 模块框图

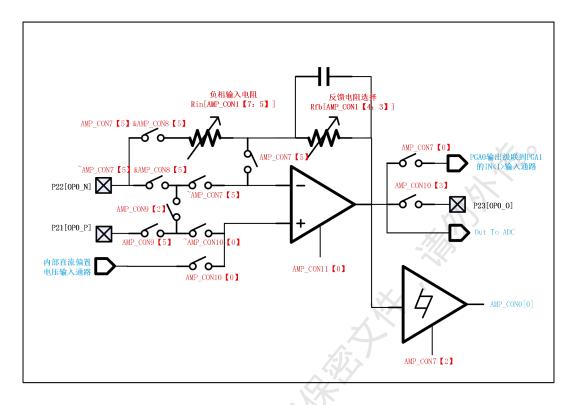


图 23-1 运放 PGA0 电路结构框图

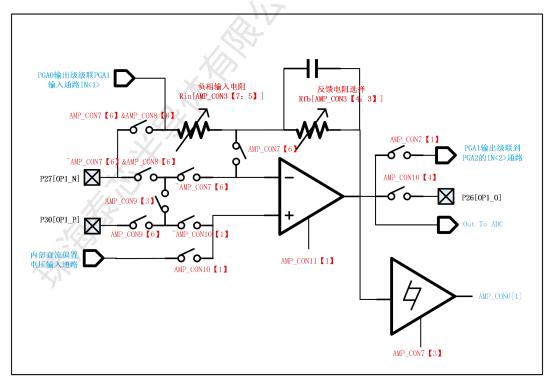


图 23-2 运放 PGA1 电路结构框图

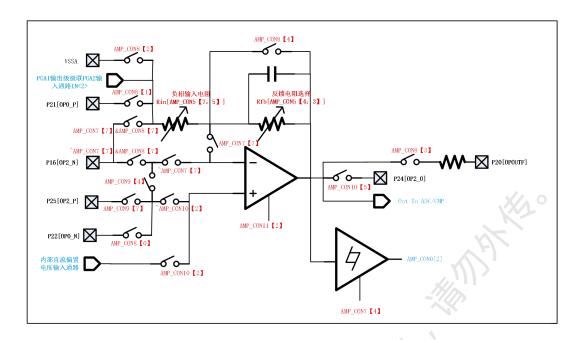


图 23-3 运放 PGA2 电路结构框图

20.6. 寄存器列表

Table 11 AMP register list

Offset	Register Name	Description
0x163 (XSFR)	AMP_CONO	AMP_CONO register
0x125 (XSFR)	AMP_CON1	AMP_CON1 register
0x126 (XSFR)	AMP_CON2	AMP_CON2 register
0x127 (XSFR)	AMP_CON3	AMP_CON3 register
0x128 (XSFR)	AMP_CON4	AMP_CON4 register
0x129 (XSFR)	AMP_CON5	AMP_CON5 register
0x12A (XSFR)	AMP_CON6	AMP_CON6 register
0x12B (XSFR)	AMP_CON7	AMP_CON7 register
0x12C (XSFR)	AMP_CON8	AMP_CON8 register
0x12D (XSFR)	AMP_CON9	AMP_CON9 register
0x12E (XSFR)	AMP_CON10	AMP_CON10 register

0x12F (XSFR)	AMP_CON11	AMP_CON11 register

20.7. 寄存器详细说明

20.7.1. **AMP_CON0**

Addr = 0x163 (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	_	- 100	-	-
		运放比较器中断触发边沿选择		
6	TRIGSEL	0x0: 上升沿触发	RW	0x0
		0x1: 下降沿触发		
		运放 PGA2 的比较器触发中断使能位		
5	AMPCMP2IE	0x0: 不使能	RW	0x0
		0x1: 使能中断		
		运放 PGA1 的比较器触发中断使能位		
4	AMPCMP1IE	0x0: 不使能	RW	0x0
		0x1: 使能中断		
		运放 PGA0 的比较器触发中断使能位		
3	AMPCMPOIE	0x0: 不使能	RW	0x0
		0x1: 使能中断		
2	AMPCMP2OUT	运放 PGA2 的比较器输出值	RO	0x0
1	AMPCMP10UT	运放 PGA1 的比较器输出值	RO	0x0
0	AMPCMP00UT	运放 PGAO 的比较器输出值	RO	0x0

20.7.2. AMP_CON1

Addr = 0x125 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		PGAO 内置负相输入电阻选择		
7 : 5	PGAORIN	0x0: 160KΩ	RW	0x1
		0x1: 80KΩ		

		0x2: 40KΩ		
		0x3: 20KΩ		
		0x4: 10KΩ		
		0x5: 5KΩ		
		0x6: 2.5KΩ		
		0x7: 1.25KΩ		
		Note: 和 RFB 配合起来在负相输入 PGA 模式获得		
		OdB 增益,在正相输入 PGA 模式获得 6dB 增益!	XZ)
		PGAO 内置反馈电阻选择		
		0x0: 80KΩ		
4 : 3	PGAORFB	0x1: 160K Ω	RW	0x0
		0x2: 320KΩ		
		0x3: 640KΩ		
		PGAO 的偏置电流选择		
		BITO 为运放总电流选择,BIT1 为输出级电流选择,		
2: 0	PGAOIB	BIT2为OFFSET电流选择;对应BIT置1为大电流,	RW	0x1
		0 为小电流; default=1,即只有运放总电流选择		
		大电流;		

		大电流;			
20.7.3. AMP_CON2 Addr = 0x126 (XSFR)					
Bit(s)	Name	Description	R/W	Reset	
7: 0	PGAOTRIM	PGAO 的 offset trim选项 其中 BIT7 为符号位, BIT6: 0 为选择位。在 trim 模式,如果 AMPCMPOOUT=0,对应的 BIT7 置 0,BIT6: 0 逐渐增大直至 AMPCMPOOUT=1;如果 AMPCMPOOUT=1,对应的 BIT7 置 1,BIT6: 0逐渐 增大直至 AMPCMPOOUT=0;	RW	0x0	

20.7.4. **AMP_CON3**

Addr = 0x127 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		PGA1 内置负相输入电阻选择		
		0x0: 160K Ω		
		0x1: 80KΩ	XLC	
		0x2: 40KΩ		
		0x3: 20KΩ		
7: 5	PGA1RIN	0x4: 10KΩ	RW	0x1
		0x5: 5KΩ		
		0x6; 2.5KΩ		
		0x7: 1.25KΩ		
		Note: 和 RFB 配合起来在负相输入 PGA 模式获得		
		0dB 增益,在正相输入 PGA 模式获得 6dB 增益!		
		PGA1 内置反馈电阻选择		
		0x0: 80KΩ		
4: 3	PGA1RFB	0x1: 160K Ω	RW	0x0
		0x2: 320K Ω		
		0x3: 640K Ω		
		PGA1 的偏置电流选择		
	//	BIT0 为运放总电流选择,BIT1 为输出级电流选择,		
2: 0	PGA1IB	BIT2为OFFSET电流选择;对应BIT置1为大电流,	RW	0x1
	7.7%	0 为小电流; default=1,即只有运放总电流选择		
		大电流;		

20.7.5. AMP_CON4

Addr = 0x128 (XSFR)

Bit(s)	Name	Description	R/W	Reset
	DOMETRIA	PGA1 的 offset trim选项	DW	0.0
7: 0	PGA1TRIM	其中 BIT7 为符号位,BIT6: 0 为选择位。在 trim	RW	0x0

模式,如果 AMPCMP10UT=0,对应的 BIT7 置 0,BIT6:	
0逐渐增大直至 AMPCMP10UT=1; 如果	
AMPCMP10UT=1,对应的BIT7置1,BIT6:0逐渐	
增大直至 AMPCMP10UT=0;	

20.7.6. **AMP_CON5**

Addr = 0x129 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		PGA2 内置负相输入电阻选择		
		0x0: 160K Ω		
		0x1: 80KΩ		
		0x2: 40KΩ		
		0x3: 20KΩ		
7: 5	PGA2RIN	0x4: 10KΩ	RW	0x1
		0x5: 5KΩ		
		0x6: 2.5KΩ		
		0x7: 1.25KΩ		
		Note: 和 RFB 配合起来在负相输入 PGA 模式获得		
		OdB 增益,在正相输入 PGA 模式获得 6dB 增益!		
		PGA2 内置反馈电阻选择		
	V.	0x0: 80KΩ		
4: 3	PGA2RFB	0x1: 160K Ω	RW	0x0
	XS	0x2: 320K Ω		
	185	0x3: 640K Ω		
	-1(2-)5	PGA2 的偏置电流选择		
3	*	BITO 为运放总电流选择,BIT1 为输出级电流选择,		
2: 0	PGA2IB	BIT2为OFFSET电流选择;对应BIT置1为大电流,	RW	0x1
		0 为小电流; default=1,即只有运放总电流选择		
		大电流;		

20.7.7. **AMP_CON6**

Addr = 0x12A (XSFR)

Bit(s)	Name	Description	R/W	Reset
	7: 0 PGA2TRIM	PGA2的 offset trim选项	RW	
		其中 BIT7 为符号位,BIT6: 0 为选择位。在 trim		
		模式,如果 AMPCMP20UT=0,对应的 BIT7 置 0,BIT6:		
7: 0		0逐渐增大直至 AMPCMP20UT=1; 如果		0x0
		AMPCMP20UT=1,对应的 BIT7 置 1,BIT6: 0 逐渐		
		增大直至 AMPCMP20UT=0;		

20.7.8. **AMP_CON7**

Addr = 0x12B (XSFR)

Bit(s	Name	Description	R/W	Reset
		AMP2 内部反馈通路选择		
7	AMP2FBSEL	0x0: 使用外部输入电阻和反馈电阻,即 0P 模式;	RW	0x1
		0x1: 使用内部输入电阻和反馈电阻,即 PGA 模式;		
		AMP1 内部反馈通路选择		
6	AMP1FBSEL	0x0: 使用外部输入电阻和反馈电阻,即 0P 模式;	RW	0x0
		0x1: 使用内部输入电阻和反馈电阻,即 PGA 模式;		
	X	AMPO 内部反馈通路选择		
5	AMPOFBSEL	0x0: 使用外部输入电阻和反馈电阻,即 0P 模式;	RW	0x0
	-1(2)	0x1: 使用内部输入电阻和反馈电阻,即 PGA 模式;		
	cik-	AMP2 内置比较器模式使能		
4	AMP2CMPMDEN	0x0: 不使能比较器模式	RW	0x0
		0x1: 使能比较器模式		
		AMP1 内置比较器模式使能		
3	AMP1CMPMDEN	0x0: 不使能比较器模式	RW	0x0
		0x1: 使能比较器模式		
2	AMPOCMPMDEN	AMPO 内置比较器模式使能	RW	0x0

		0x0: 不使能比较器模式		
		0x1: 使能比较器模式		
		PGA1 输出到 PGA2 的输入使能		
1	PGA1TO2EN	0x0: 不使能	RW	0x0
		0x1: 使能		
		PGAO 输出到 PGA1 的输入使能		
0	PGAOTO1EN	0x0: 不使能	RW	0x0
		0x1: 使能	XV.	

20.7.9. **AMP_CON8**

Addr = 0x12C (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	AMP2IN2IO	AMP2 负相输入端到 I0 的通路选择使能 0x0: 不使能 0x1: 使能	RW	0x0
6	AMP1IN2IO	AMP1 负相输入端到 I0 的通路选择使能 0x0: 不使能 0x1: 使能	RW	0x0
5	AMPOIN2IO	AMP0 负相输入端到 I0 的通路选择使能 0x0: 不使能 0x1: 使能	RW	0x0
4	AMPPGA2IO	PGA2 的 OUTI 选通到 PGA2 的 VINI 使能 0x0: 不使能 0x1: 使能	RW	0x0
3	PGA2OUT10KEN	PGA2 的 OUT 输出通过 10K 电阻到 PGAOUTF 使能 0x0: 不使能 0x1: 使能	RW	0x0
2	AVSSTOPGA2INEN	PGA2 的 IN 选通到 AVSS (VSSPGA) 使能 0x0: 不使能 0x1: 使能	RW	0x0

			PGA2 的 IN 选通到 PGA0 的 IP 使能		
	1	PGA01PTOPGA21NEN	0x0: 不使能	RW	0x1
L			0x1: 使能		
l			PGA2 的 IP 选通到 PGA0 的 IN 使能		
	0	PGAOINTOPGA2IPEN	0x0: 不使能	RW	0x1
L			0x1: 使能		

20.7.10. **AMP_CON9**

Addr = 0x12D (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	AMP2IP2IOEN	AMP2 正相输入端到 I0 的通路选择使能 0x0: 不使能 0x1: 使能	RW	0x0
6	AMP1IP2IOEN	AMP1 正相输入端到 I0 的通路选择使能 0x0: 不使能 0x1: 使能	RW	0x0
5	AMPOIP2IOEN	AMP0 正相输入端到 I0 的通路选择使能 0x0: 不使能 0x1: 使能	RW	0x0
4	AMP2IP2IN	AMP2 内部正负输入端短接功能,用于 offset 校正. 0x0: 不短接 0x1: 短接	RW	0x0
3	AMP1IP2IN	AMP1 内部正负输入端短接功能,用于 offset 校正. 0x0: 不短接 0x1: 短接	RW	0x0
2	AMPOIP2IN	AMPO 内部正负输入端短接功能,用于 offset 校正. 0x0: 不短接 0x1: 短接	RW	0x0

1	AMPLPEN	AMP 模块低功耗模式使能(功耗 1uA) 0x0: 正常模式 0x1: 低功耗模式	RW	0x0
		PGA 总偏置电流选择		
0	AMPPGAIB	0x0: 1X	RW	0x0
		0x1: 2X		

20.7.11. **AMP_CON10**

Addr = 0x12E (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 6	_	-	1	-
		AMP2 输出端到 I0 的通路选择使能		
5	AMP20UT2I0EN	0x0: 不使能	RW	0x0
		0x1: 使能		
		AMP1 输出端到 IO 的通路选择使能		
4	AMP10UT2I0EN	0x0: 不使能	RW	0x0
		0x1: 使能		
		AMPO 输出端到 IO 的通路选择使能		
3	AMPOOUT2IOEN	0x0: 不使能	RW	0x0
	//	0x1: 使能		
	3//	AMP2 正相输入端口选择		
2	AMP2IPSEL	0x0:外部 I0 输入(注意对应的 IP2I0 要使能)	RW	0x0
		0x1: 内部直流偏置电压输入通路		
	15%	AMP1 正相输入端口选择		
1	AMP1IPSEL	0x0:外部 I0 输入(注意对应的 IP2I0 要使能)	RW	0x0
	7.	0x1: 内部直流偏置电压输入通路		
		AMPO 正相输入端口选择		
0	AMPOIPSEL	0x0:外部 I0 输入(注意对应的 IP2I0 要使能)	RW	0x0
		0x1: 内部直流偏置电压输入通路		

20.7.12. **AMP_CON11**

Addr = 0x12F (XSFR)

Bit(s)	Name	Description	R/W	Reset
7 : 3	_	_	_	-
		PGA2 使能		
2	PGA2EN	0x0: 不使能	RW	0x0
		0x1: 使能		
		PGA1 使能		
1	PGA1EN	0x0: 不使能	RW	0x0
		0x1: 使能		
		PGAO 使能		
0	PGA0EN	0x0: 不使能	RW	0x0
		0x1: 使能		

21. LED 模块

21.1. 功能概述

- ▶ 最大支持 8 个 com, 12 个 seg
- ▶ 灵活的使能控制,支持每个 com 和 seg 单独使能控制
- ▶ 支持双 buffer, 可以维护两页数据
- > 支持帧中断
- ▶ 支持扫描频率配置
- ▶ 通过内部 DMA 读取显示数据

21.2. 功能框图

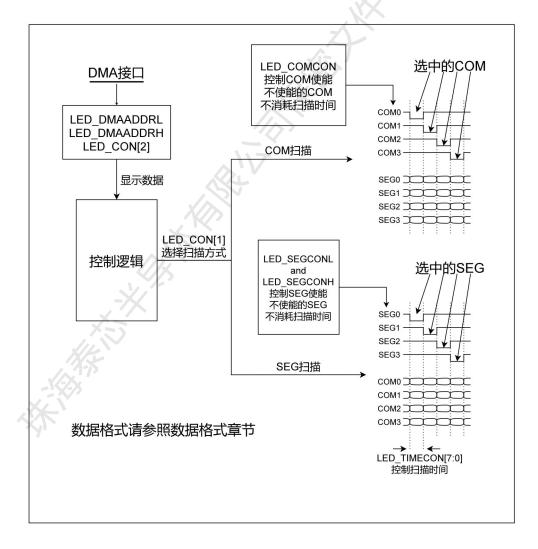


图 21-1 LED 模块功能框图

21.3. 数据结构

21.3.1. COM 扫描的数据结构

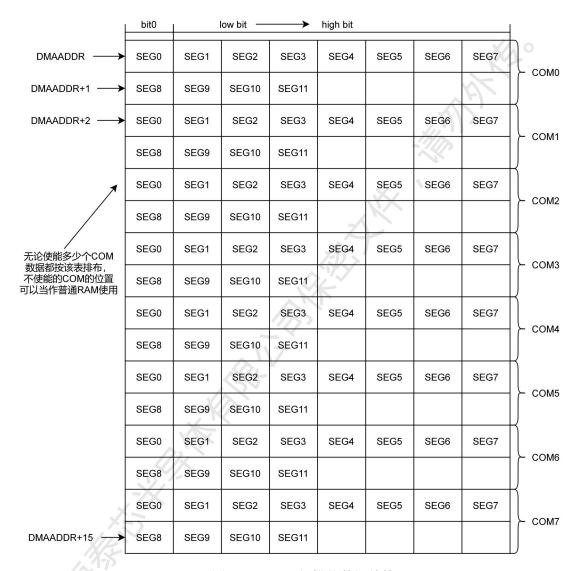


图 21-2 COM 扫描的数据结构

通过 LED_DMAADDRL 和 LED_DMAADDRH 来配置 LED 数据表的首地址,配置完首地址就确定了整个表的位置,可配置 LED_CON[2]来让 DMA 的首地址向后偏移 16byte。上表为 COM 扫描的数据储存格式。COM 扫描时选中的 COM 为低电平。设置 SEG 的值为 1 则 SEG 推高电平,设置为 0 则推低电平。不使能某个 COM 时,该 COM 的储存空间可以留作它用。

21.3.2. SEG 扫描的数据结构

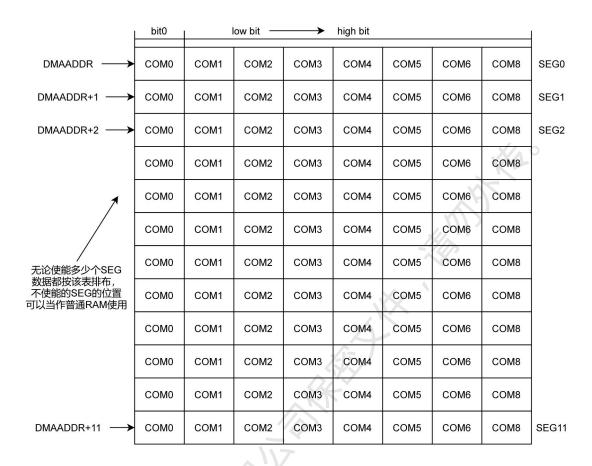


图 21-3 SEG 扫描的数据结构

通过 LED_DMAADDRL 和 LED_DMAADDRH 来配置 LED 数据表的首地址,配置完首地址就确定了整个表的位置,可配置 LED_CON[2]来让 DMA 的首地址向后偏移 16byte。上表为 SEG 扫描的数据储存格式。SEG 扫描时选中的 SEG 为低电平。设置 COM 的值为 1 则 COM 推高电平,设置为 0 则推低电平。不使能某个 SEG 时,该 SEG 的储存空间可以留作它用。

21.4. 寄存器列表

Address	Register Name	Description
0x07 (XSFR)	LED_SEGCONL	LED SEG enable control register
0x08 (XSFR)	LED_SEGCONH	LED SEG enable control register
0x09 (XSFR)	LED_COMCON	LED COM enable control register

OxOA (XSFR)	LED_CON	LED COM enable control register
0x0B (XSFR)	LED_TIMECON	LED display timing control register
0x0C (XSFR)	LED_DMAADDRL	LED display data DMA start address register
0x0D (XSFR)	LED_DMAADDRH	LED display data DMA start address register

21.5. 寄存器详细说明

21.5.1. **LED_SEGCONL**

Addr = 0x07 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		SEG 使能控制器,每一 bit 控制一个 SEG.		
		bit7:控制 SEG7 使能和关闭		
7 0	a o operation	bit6: 控制 SEG6 使能和关闭	DW	00
7: 0 SEGCONL	SEGCONL		RW	0x0
		bit0:控制 SEGO 使能和关闭		
		Note: 每个控制 bit 置 1, 则使能; 写 0, 则关闭使能。		

21.5.2. LED_SEGCONH Addr = 0x08 (XSFR)

Addr = 0x08 (XSFR)

Bit(s)	Name	Description		Reset
7: 4		_	ı	_
		SEG 使能控制器,每一 bit 控制一个 SEG.		
	-123	bit3: 控制 SEG11 使能和关闭		
2 0	CECCOMI	bit2: 控制 SEG10 使能和关闭	DW	0.0
3: 0	SEGCONH	bitl: 控制 SEG9 使能和关闭	RW	0x0
		bit0: 控制 SEG8 使能和关闭		
		Note: 每个控制 bit 置 1,则使能;写 0,则关闭使能。		

21.5.3. **LED_COMCON**

Addr = 0x09 (XSFR)

Bit(s)	Name	Description	R/W	Reset
		COM 使能控制器,每一 bit 控制一个 COM.		
		bit7: 控制 COM7		
		bit6: 控制 COM6	XLO	
7: 0	COMCON		RW	0x0
		bit0: 控制 COMO		
		Note: 每个控制 bit 置 1,则使能;写 0,则关闭使		
		能。		

21.5.4. **LED_CON**

Addr = 0x0A (XSFR)

Bit(s)	Name	Description	R/W	Reset
7	PENDING	LED 扫完一帧的 PENDING 标志位,每扫完一帧都会置 1,写 1 清零	RC	0x0
6: 4	_	-	1	_
3	INTEN	LED 扫完一帧中断使能位. 0x0: 不使能 0x1: 使能	RW	0x0
2	DMAADDRSEL	这一位控制 DMA 拿数据的地址的偏移量. 0x0: 不偏移 0x1: 地址向后偏移 16byte (此位起到一个双 buffer 类似的作用)	RW	0x0
1	COMSEGSEL	扫描方式选择位. 0x0: com 扫描 0x1: seg 扫描	RW	0x0
0	LEDEN	LED 使能位 使能之后从 DMAADDRH 和 DMAADDRL 的地址开始拿数据 扫描点亮,用户将数据写到对应的地址即可。	RW	0x0

21.5.5. **LED_TIMECON**

Addr = 0x0B (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	TIMECON	扫描到某个 com 或 seg 时点亮的时间,步长为 32 微秒.	RW	0x0

21.5.6. LED_DMAADDRL

Addr = 0x0C (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DMAADDRL	LED 数据储存首地址的低 8 位	WO	0x0

21.5.7. **LED_DMAADDRH**

Addr = 0x0D (XSFR)

Bit(s)	Name	Description	R/W	Reset
7: 0	DMAADDRH	LED 数据储存首地址的高 8 位	WO	0x0

21.6. 使用流程说明

- 1) 配置 COM 或 SEG 的单次扫描时间(配置 LED_TIMECON)
- 2) 配置 LED 显示数据的首地址(配置 LED_DMAADDRH 和 LED_DMAADDRL)
- 3) 将 LED 显示数据写到首地址对应的地址
- 4) 使能 LED